An electrocardiogram-based AI algorithm for early detection of pulmonary hypertension

被引:4
|
作者
Dubrock, Hilary M. [1 ]
Wagner, Tyler E. [2 ,3 ]
Carlson, Katherine [2 ,3 ]
Carpenter, Corinne L. [2 ]
Awasthi, Samir [2 ,3 ]
Attia, Zachi I. [4 ]
Frantz, Robert P. [4 ]
Friedman, Paul A. [4 ]
Kapa, Suraj [4 ]
Annis, Jeffrey [5 ,6 ]
Brittain, Evan L. [5 ]
Hemnes, Anna R. [7 ]
Asirvatham, Samuel J. [4 ]
Babu, Melwin [3 ,8 ]
Prasad, Ashim [3 ,8 ]
Yoo, Unice [2 ]
Barve, Rakesh [3 ,8 ]
Selej, Mona [9 ]
Agron, Peter [9 ]
Kogan, Emily [9 ]
Quinn, Deborah [9 ]
Dunnmon, Preston [9 ]
Khan, Najat [9 ]
Soundararajan, Venky [2 ,3 ]
机构
[1] Mayo Clin, Div Pulm & Crit Care Med, Rochester, MN 55905 USA
[2] nference, Cambridge, MA USA
[3] Anumana, Cambridge, MA USA
[4] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
[5] Vanderbilt Univ, Med Ctr, Div Cardiovasc Med, Nashville, TN USA
[6] Vanderbilt Inst Clin & Translat Res, Nashville, TN USA
[7] Vanderbilt Univ, Med Ctr, Div Allergy Pulm & Crit Care Med, Nashville, TN USA
[8] Nference Labs, Bangalore, India
[9] Janssen Res & Dev LLC, Raritan, NJ USA
关键词
ARTIFICIAL-INTELLIGENCE; ARTERIAL-HYPERTENSION; DIAGNOSIS; GUIDELINES;
D O I
10.1183/13993003.00192-2024
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background Early diagnosis of pulmonary hypertension (PH) is critical for effective treatment and management. We aimed to develop and externally validate an artificial intelligence algorithm that could serve as a PH screening tool, based on analysis of a standard 12-lead ECG. Methods The PH Early Detection Algorithm (PH-EDA) is a convolutional neural network developed using retrospective ECG voltage-time - time data, with patients classified as " PH-likely" " or " PH-unlikely" " (controls) based on right heart catheterisation or echocardiography. In total, 39 823 PH-likely patients and 219 404 control patients from Mayo Clinic were randomly split into training (48%), validation (12%) and test (40%) sets. ECGs taken within 1 month of PH diagnosis (diagnostic dataset) were used to train the PH-EDA at Mayo Clinic. Performance was tested on diagnostic ECGs within the test sets from Mayo Clinic (n=16 175/87 998 PH-likely/controls) and Vanderbilt University Medical Center (VUMC; n=6045/ 24 256 PH-likely/controls). In addition, performance was tested on ECGs taken 6-18 - 18 months (pre-emptive dataset), and up to 5 years prior to a PH diagnosis at both sites. Results Performance testing yielded an area under the receiver operating characteristic curve (AUC) of 0.92 and 0.88 in the diagnostic test sets at Mayo Clinic and VUMC, respectively, and 0.86 and 0.81, respectively, in the pre-emptive test sets. The AUC remained a minimum of 0.79 at Mayo Clinic and 0.73 at VUMC up to 5 years before diagnosis. Conclusion The PH-EDA can detect PH at diagnosis and 6-18 - 18 months prior, demonstrating the potential to accelerate diagnosis and management of this debilitating disease.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Early detection of pulmonary arterial hypertension
    Lau, Edmund M. T.
    Humbert, Marc
    Celermajer, David S.
    NATURE REVIEWS CARDIOLOGY, 2015, 12 (03) : 143 - 155
  • [32] Early detection of pulmonary arterial hypertension
    Edmund M. T. Lau
    Marc Humbert
    David S. Celermajer
    Nature Reviews Cardiology, 2015, 12 : 143 - 155
  • [33] Variability in interpretation of the electrocardiogram in young athletes: an unrecognized obstacle for electrocardiogram-based screening protocols
    Berte, Benjamin
    Duytschaever, Mattias
    Elices, Juliana
    Kataria, Vikas
    Timmers, Liesbeth
    Van Heuverswyn, Frederic
    Stroobandt, Roland
    De Neve, Jan
    Watteyne, Karel
    Vandensteen, Elke
    Vandekerckhove, Yves
    Tavernier, Rene
    EUROPACE, 2015, 17 (09): : 1435 - 1440
  • [34] Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms-A Feasibility Study
    Pustozerov, Evgenii
    Kulau, Ulf
    Albrecht, Urs-Vito
    BIOENGINEERING-BASEL, 2024, 11 (06):
  • [35] Diagnostic and Prognostic Electrocardiogram-Based Models for Rapid Clinical Applications
    Islam, Md Saiful
    Kalmady, Sunil Vasu
    Hindle, Abram
    Sandhu, Roopinder
    Sun, Weijie
    Sepehrvand, Nariman
    Greiner, Russell
    Kaul, Padma
    CANADIAN JOURNAL OF CARDIOLOGY, 2024, 40 (10) : 1788 - 1803
  • [36] AI-based detection for Remote Electrocardiogram Monitoring System
    Garcia, Max
    Kumar, Sanjeev
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0336 - 0341
  • [37] AI-based preeclampsia detection and prediction with electrocardiogram data
    Butler, Liam
    Gunturkun, Fatma
    Chinthala, Lokesh
    Karabayir, Ibrahim
    Tootooni, Mohammad S.
    Bakir-Batu, Berna
    Celik, Turgay
    Akbilgic, Oguz
    Davis, Robert L.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [38] Electrocardiogram-based Parameters for the Prediction of Sudden Cardiac Death: A Review
    Jumahat, Shaliza
    Misran, Norbahiah
    Bong, Gan Kok
    Islam, Mohammad Tariqul
    Yahya, M. A. M.
    JURNAL KEJURUTERAAN, 2020, 32 (02): : 259 - 269
  • [39] Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy
    Jung, Y.
    Kang, S.
    Son, J.
    Lee, H.
    Han, G.
    Yoo, A.
    Kwon, J.
    Song, Y.
    Park, C.
    Park, J.
    Jun, J.
    Lee, M.
    Lee, S.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 62 : 60 - 61
  • [40] Electrocardiogram-Based Artificial Intelligence Predicts Incident Heart Failure
    Khurshid, Shaan
    Friedman, Samuel
    Kany, Shinwan
    Cunningham, Jonathan
    Lau, Emily
    Pipilas, Daniel
    Al-Alusi, Mostafa
    Ramo, Joel
    Pirruccello, James
    Nauffal, Victor
    Reeder, Christopher
    Singh, Pulkit
    CIRCULATION, 2023, 148