The Respiratory Compensation Point: Mechanisms and Relation to the Maximal Metabolic Steady State

被引:5
|
作者
Keir, Daniel A. [1 ,2 ,3 ]
Pogliaghi, Silvia [1 ,4 ]
Inglis, Erin Calaine [4 ]
Murias, Juan M. [5 ]
Iannetta, Danilo [6 ]
机构
[1] Univ Western Ontario, Sch Kinesiol, TH-4155,1151 Richmond St, London, ON N6A 3K7, Canada
[2] Lawson Hlth Res Inst, London, ON, Canada
[3] Toronto Gen Hosp, Toronto Gen Res Inst, Toronto, ON, Canada
[4] Univ Verona, Dept Neurosci Biomed & Movement Sci, Verona, Italy
[5] Hamad Bin Khalifa Univ, Coll Hlth & Life Sci, Doha, Qatar
[6] Univ Brescia, Dept Clin & Expt Sci, Brescia, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
CRITICAL POWER; INCREMENTAL EXERCISE; ACID-BASE; PHYSIOLOGICAL-MECHANISMS; VENTILATORY RESPONSES; DOTO(2) RESPONSES; EXCHANGE DYNAMICS; INTRACELLULAR PH; EXTRACELLULAR PH; OXYGEN-UPTAKE;
D O I
10.1007/s40279-024-02084-3
中图分类号
G8 [体育];
学科分类号
04 ; 0403 ;
摘要
At a point during the latter third of an incremental exercise protocol, ventilation begins to exceed the rate of clearance of carbon dioxide (CO2) at the lungs (V-center dot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}}$$\end{document}CO2). The onset of this hyperventilation, which is confirmed by a fall from a period of stability in end-tidal and arterial CO2 tensions (PCO2), is referred to as the respiratory compensation point (RCP). The mechanisms that contribute to the RCP remain debated as does its surrogacy for the maximal metabolic steady state of constant-power exercise (i.e., the highest work rate associated with maintenance of physiological steady state). The objective of this current opinion is to summarize the original research contributions that support and refute the hypotheses that: (i) the RCP represents a rapid, peripheral chemoreceptor-mediated reflex response engaged when the metabolic rate at which the buffering systems can no longer constrain the rise in hydrogen ions ([H+]) associated with rising lactate concentration and metabolic CO2 production is surpassed; and (ii) the metabolic rate at which this occurs is equivalent to the maximal metabolic steady state of constant power exercise. In doing so, we will shed light on potential mechanisms contributing to the RCP, attempt to reconcile disparate findings, make a case for its adoption for exercise intensity stratification and propose strategies for the use of RCP in aerobic exercise prescription.
引用
收藏
页码:2993 / 3003
页数:11
相关论文
共 50 条
  • [11] METABOLIC CONTROL MECHANISMS .4. EFFECT OF GLUCOSE UPON THE STEADY STATE OF RESPIRATORY ENZYMES IN THE ASCITES CELL
    CHANCE, B
    HESS, B
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1959, 234 (09) : 2421 - 2427
  • [12] A "Step-Ramp-Step" Protocol to Identify the Maximal Metabolic Steady State
    Iannetta, Danilo
    Inglis, Erin Calaine
    Pogliaghi, Silvia
    Murias, Juan M.
    Keir, Daniel A.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2020, 52 (09): : 2011 - 2019
  • [13] Discussion of "Can measures of critical power precisely estimate the maximal metabolic steady-state?" - Is it still necessary to compare critical power to maximal lactate steady state?
    de Lucas, Ricardo Dantas
    APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2018, 43 (01) : 94 - 95
  • [14] POWER OUTPUT AT THE HEART RATE TURN POINT IN RELATION TO METABOLIC STEADY-STATE CONDITIONS IN PATIENTS WITH CHD.
    Pokan, R.
    Hofmann, P.
    Smekal, G.
    Pelikan, J.
    Retzer, H.
    Rohrer, A.
    von Duvillard, S. P.
    Wonisch, M.
    Schmid, P.
    Bachl, N.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2001, 33 (05): : S64 - S64
  • [15] Influence of pedal cadence on the respiratory compensation point and its relation to critical power
    Broxterman, R. M.
    Ade, C. J.
    Barker, T.
    Barstow, T. J.
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2015, 208 : 1 - 7
  • [16] RESPIRATORY COMPENSATION IN METABOLIC ALKALOSIS
    KILDEBERG, P
    ACTA MEDICA SCANDINAVICA, 1963, 174 (04): : 515 - +
  • [17] Identification of maximal steady-state metabolic rate by the change in muscle oxygen saturation
    Matthews, Ian R.
    Heenan, Logan J.
    Fisher, Kathleen G.
    Flood, Emma F.
    Wehrman, Logan W.
    Kirby, Brett S.
    Wilkins, Brad W.
    JOURNAL OF APPLIED PHYSIOLOGY, 2023, 134 (06) : 1349 - 1358
  • [18] Can measures of critical power precisely estimate the maximal metabolic steady-state?
    Maturana, Felipe Mattioni
    Keir, Daniel A.
    McLay, Kaitlin M.
    Murias, Juan M.
    APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2016, 41 (11) : 1197 - 1203
  • [19] Sex differences in the maximal metabolic steady state of fitness-matched women and men
    Wilkins, Brad W.
    Fisher, Kathleen G.
    Flood, Emma F.
    Heenan, Logan J.
    Matthews, Ian R.
    JOURNAL OF APPLIED PHYSIOLOGY, 2025, 138 (02) : 612 - 622
  • [20] The relationship between the heart rate deflection point test and maximal lactate steady state
    De Assis Pereira, Paulo E.
    Piubelli Carrara, Vitor K.
    Mello Rissato, Gustavo
    Pereira Duarte, Joao M.
    Fernandes Guerra, Ricardo L.
    Silva Marques De Azevedo, Paulo H.
    JOURNAL OF SPORTS MEDICINE AND PHYSICAL FITNESS, 2016, 56 (05): : 497 - 502