Fabrication and catalytic activity of TiO2/Fe3O4 and Fe3O4/ β-cyclodextrin nanocatalysts for safe treatment of industrial wastewater

被引:0
|
作者
Almutairi, Safer Tale [1 ]
机构
[1] Univ Hafr Al Batin, Coll Sci, Dept Chem, POB 1803, Hafar Al Batin 39524, Saudi Arabia
关键词
Nanocatalyst; beta-cyclodextrin; Heavy metals; Wastewater; PHOTOCATALYTIC DEGRADATION; NANOPARTICLES; NANOMATERIALS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid industrial growth has led to increased production of wastewater containing pollutants like heavy metals and organic compounds. These pollutants pose risks to human health and the environment if not properly treated. Engineered nanocatalyst materials (ENMs) are a burgeoning technology that show promise for treating industrial wastewater. Metal oxide ENMs, such as Fe3O4@beta-cyclodextrin and Fe3O4@TiO2, have demonstrated efficient removal of heavy metals and methylene blue from wastewater. Fe3O4@TiO2 was found to be more effective than Fe3O4@beta cyclodextrin in removing these pollutants. The highest removal efficiencies were observed at a concentration of 40 mg/g and pH 8. Copper showed the highest removal efficiency (160.5 mg/g), followed by nickel (77.09 mg/g), lead (56.0 mg/g), and cadmium (46.05 mg/g). For methylene blue, the highest removal efficiency was also observed at a concentration of 40 mg/g and pH 8 (91.16 %). Lead (90.5 %), copper (90.48 %), nickel (83.34 %), and cadmium (77.58 %) were also efficiently removed. These findings highlight the potential of Fe3O4@TiO2 as a promising material for industrial wastewater treatment, offering cleaner and safer water for human health and the environment. ENMs have the potential to revolutionize wastewater treatment processes.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [41] Fabrication of Magnetic Fe3O4 Nanotubes by Electrospinning
    Cao Xingxing
    Zhang Xuebin
    Shao Hao
    Feng Yi
    RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (10) : 2330 - 2334
  • [42] Fe3O4•C and ZrO2•Fe3O4•C Nanostructures: Synthesis and Characterization
    Postnov, V. N.
    Naumysheva, E. B.
    Afonin, M. V.
    Korolev, D. V.
    Murin, I. V.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2015, 85 (12) : 2677 - 2680
  • [44] Deposition and Magnetic Properties of Fe3O4/Fe/Fe3O4 Tri-layer Films
    T.S.Chin and W.C.Yang (Department of Materials Science and Engineering
    Journal of Materials Science & Technology, 2000, (02) : 191 - 194
  • [45] Fe3O4·C and ZrO2·Fe3O4·C nanostructures: Synthesis and characterization
    V. N. Postnov
    E. B. Naumysheva
    M. V. Afonin
    D. V. Korolev
    I. V. Murin
    Russian Journal of General Chemistry, 2015, 85 : 2677 - 2680
  • [46] Recoverability of Fe3O4/TiO2 nanocatalyst in methyl orange degradation
    Razip, Nora Izzati Mohd
    Lee, Kian Mun
    Lai, Chin Wei
    Ong, Boon Hoong
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07)
  • [47] 磁性Fe3O4/TiO2复合颗粒的研制
    王保国
    程芹
    朱静
    程景耀
    张金利
    李韡
    石油化工, 2009, 38 (09) : 929 - 934
  • [48] Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater
    Badruddoza, Abu Zayed M.
    Shawon, Zayed Bin Zakir
    Daniel, Tay Wei Jin
    Hidajat, Kus
    Uddin, Mohammad Shahab
    CARBOHYDRATE POLYMERS, 2013, 91 (01) : 322 - 332
  • [49] Fabrication of shape controlled Fe3O4 nanostructure
    Zheng, Y. Y.
    Wang, X. B.
    Shang, L.
    Li, C. R.
    Cui, C.
    Dong, W. J.
    Tang, W. H.
    Chen, B. Y.
    MATERIALS CHARACTERIZATION, 2010, 61 (04) : 489 - 492
  • [50] Fabrication of magnetic Fe3O4 nanotubes by electrospinning
    Zhang, Xuebin, 1600, Science Press (43):