A potential allosteric inhibitor of SARS-CoV-2 main protease (Mpro) identified through metastable state analysis

被引:0
|
作者
Fatima, Asma [1 ]
Geethakumari, Anupriya M. [1 ]
Ahmed, Wesam S. [1 ]
Biswas, Kabir H. [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Hlth & Life Sci, Div Biol & Biomed Sci, Doha, Qatar
关键词
COVID-19; allosteric regulator; MD simulation; metastable states; M-pro; ZINC15; MOLECULAR-DYNAMICS; SOFTWARE NEWS; BINDING-SITES; PREDICTION; CORONAVIRUS; DISCOVERY; DRUGS; ZINC;
D O I
10.3389/fmolb.2024.1451280
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anti-COVID19 drugs, such as nirmatrelvir, have been developed targeting the SARS-CoV-2 main protease, M-pro, based on the critical requirement of its proteolytic processing of the viral polyproteins into functional proteins essential for viral replication. However, the emergence of SARS-CoV-2 variants with M-pro mutations has raised the possibility of developing resistance against these drugs, likely due to therapeutic targeting of the M-pro catalytic site. An alternative to these drugs is the development of drugs that target an allosteric site distant from the catalytic site in the protein that may reduce the chance of the emergence of resistant mutants. Here, we combine computational analysis with in vitro assay and report the discovery of a potential allosteric site and an allosteric inhibitor of SARS-CoV-2 M-pro. Specifically, we identified an M-pro metastable state with a deformed catalytic site harboring potential allosteric sites, raising the possibility that stabilization of this metastable state through ligand binding can lead to the inhibition of M-pro activity. We then performed a computational screening of a library (similar to 4.2 million) of drug-like compounds from the ZINC database and identified several candidate molecules with high predicted binding affinity. MD simulations showed stable binding of the three top-ranking compounds to the putative allosteric sites in the protein. Finally, we tested the three compounds in vitro using a BRET-based M-pro biosensor and found that one of the compounds (ZINC4497834) inhibited the M-pro activity. We envisage that the identification of a potential allosteric inhibitor of M-pro will aid in developing improved anti-COVID-19 therapy.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] In silico investigation of HCV and RNA synthesis inhibitor antibiotic drugs as potential inhibitors of SARS-CoV-2 main protease (Mpro)
    Kishore, Merusomayajula V.
    Rao, T. Siva
    Kumari, G. N. D.
    FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 10 (01)
  • [22] Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (Mpro)
    Yang, Yue
    Luo, Yi-Dan
    Zhang, Chen-Bo
    Xiang, Yang
    Bai, Xin-Yue
    Zhang, Die
    Fu, Zhao-Ying
    Hao, Ruo-Bing
    Liu, Xiao-Long
    ACS OMEGA, 2024, 9 (32): : 34196 - 34219
  • [23] Statine-based peptidomimetic compounds as inhibitors for SARS-CoV-2 main protease (SARS-CoV-2 Mpro)
    Azevedo, Pedro Henrique R. de A.
    Camargo, Priscila G.
    Constant, Larissa E. C.
    Costa, Stephany da S.
    Silva, Celimar Sinezia
    Rosa, Alice S.
    Souza, Daniel D. C.
    Tucci, Amanda R.
    Ferreira, Vivian N. S.
    Oliveira, Thamara Kelcya F.
    Borba, Nathalia R. R.
    Rodrigues, Carlos R.
    Albuquerque, Magaly G.
    Dias, Luiza R. S.
    Garrett, Rafael
    Miranda, Milene D.
    Allonso, Diego
    Lima, Camilo Henrique da S.
    Muri, Estela Maris F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation
    Rao, Priyashi
    Shukla, Arpit
    Parmar, Paritosh
    Rawal, Rakesh M.
    Patel, Baldev
    Saraf, Meenu
    Goswami, Dweipayan
    BIOPHYSICAL CHEMISTRY, 2020, 264
  • [25] Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach
    Enmozhi, Sukanth Kumar
    Raja, Kavitha
    Sebastine, Irudhayasamy
    Joseph, Jerrine
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (09): : 3092 - 3098
  • [26] Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations
    Patel, Chirag N.
    Jani, Siddhi P.
    Jaiswal, Dharmesh G.
    Kumar, Sivakumar Prasanth
    Mangukia, Naman
    Parmar, Robin M.
    Rawal, Rakesh M.
    Pandya, Himanshu A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Invalidation of geraniin as a potential inhibitor against SARS-CoV-2 main protease
    Zhang, Rui
    Yan, Haohao
    Zhou, Jiahao
    Liu, Xiaoping
    Chen, Yunyu
    NATURAL PRODUCT RESEARCH, 2024, 38 (12) : 2078 - 2081
  • [28] IN SILICO PREDICTION OF INHIBITORY POTENTIAL OF A PUNICALAGIN ß-ANOMER AGAINST SARS-COV-2 MAIN PROTEASE (MPRO)
    Monteiro, Norberto
    Monteiro, Vitoria
    Lima, Lorena
    Karolline, Anna
    Machado, Richele
    QUIMICA NOVA, 2022, 45 (10): : 1230 - 1235
  • [29] Computational investigation of natural compounds as potential main protease (Mpro) inhibitors for SARS-CoV-2 virus
    Patel, Chirag N.
    Jani, Siddhi P.
    Modi, Krunal M.
    Kumar, Yogesh
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
  • [30] Computational Investigation on Natural Quinazoline Alkaloids as Potential Inhibitors of the Main Protease (MPro) of SARS-CoV-2
    Jana, Abhisek
    Roy, Tarun
    Layek, Sarbajit
    Ghosal, Subhas
    Banerjee, Deb Ranjan
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2022, 21 (01): : 65 - 82