EFU Net: Edge Information Fused 3D Unet for Brain Tumor Segmentation

被引:0
|
作者
Wang, Yu [1 ]
Tian, Hengyi [1 ]
Liu, Minhua [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Comp & Artificial Intelligence, Beijing 100048, Peoples R China
基金
北京市自然科学基金;
关键词
Deep learning; brain tumor segmentation; encoder decoder structure; edge attention mechanism; hybrid loss function; CLASSIFICATION; FEATURES;
D O I
10.13164/re.2024.0387
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain tumors refer to abnormal cell proliferation formed in brain tissue, which can cause neurological dysfunction and cognitive impairment, posing a serious threat to human health. Therefore, it becomes a very challenging work to full-automaticly segment brain tumors using computers because of the mutual infiltration and fuzzy boundary between the focus areas and the normal brain tissue. To address the above issues, a segmentation method which integrates edge features is proposed in this paper. The overall segmentation architecture follows the encoder decoder structure, extracting rich features from the encoder. The first two layers of features are input to the edge attention module, and to extract tumor edge features which are fully fused with the features of the decoder segment. At the same time, an adaptive weighted mixed loss function is introduced to train the network by adaptively adjusting the weights of different loss parts in the training process. Relevant experiments were carried out using the public brain tumor data set. The Dice mean values of the proposed segmentation model in the whole tumor area (WT), the core tumor area (TC), and the enhancing tumor area (ET) reach 91.10%, 87.16%, and 88.86%, respectively, and the mean values of Hausdorff distance are 3.92, 5.12, and 1.92 mm, respectively. The experimental results showed that the proposed method can significantly improve segmentation accuracy, especially the segmentation effect of the edge part.
引用
下载
收藏
页码:387 / 396
页数:10
相关论文
共 50 条
  • [31] SCAU-net: 3D self-calibrated attention U-Net for brain tumor segmentation
    Liu, Dongwei
    Sheng, Ning
    Han, Yutong
    Hou, Yaqing
    Liu, Bin
    Zhang, Jianxin
    Zhang, Qiang
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (33): : 23973 - 23985
  • [32] SCAU-net: 3D self-calibrated attention U-Net for brain tumor segmentation
    Dongwei Liu
    Ning Sheng
    Yutong Han
    Yaqing Hou
    Bin Liu
    Jianxin Zhang
    Qiang Zhang
    Neural Computing and Applications, 2023, 35 : 23973 - 23985
  • [34] MRI Brain Tumor Segmentation and Uncertainty Estimation Using 3D-UNet Architectures
    Mora Ballestar, Laura
    Vilaplana, Veronica
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 376 - 390
  • [35] Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images
    Nodirov, Jakhongir
    Abdusalomov, Akmalbek Bobomirzaevich
    Whangbo, Taeg Keun
    SENSORS, 2022, 22 (17)
  • [36] Unet3D with Multiple Atrous Convolutions Attention Block for Brain Tumor Segmentation
    Akbar, Agus Subhan
    Fatichah, Chastine
    Suciati, Nanik
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 182 - 193
  • [37] Advanced Fusion of 3D U-Net-LSTM Models for Accurate Brain Tumor Segmentation
    Sajjanar, Ravikumar
    Dixit, Umesh D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 488 - 502
  • [38] 3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network
    Gonzalez, S. Rosas
    Sekou, T. Birgui
    Hidane, M.
    Tauber, C.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 113 - 123
  • [39] Automatic segmentation of brain tumor in intraoperative ultrasound images using 3D U-Net
    Carton, Francois-Xavier
    Chabanas, Matthieu
    Munkvold, Bodil K. R.
    Reinertsen, Ingerid
    Noble, Jack H.
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [40] An efficient brain tumor segmentation model based on group normalization and 3D U-Net
    Chen, Runlin
    Lin, Yangping
    Ren, Yanming
    Deng, Hao
    Cui, Wenyao
    Liu, Wenjie
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)