Entire Solutions of Certain Type Binomial Differential Equations

被引:0
|
作者
Yang, Shuang-Shuang [1 ]
Liao, Liang-Wen [1 ]
Lu, Xiao-Qing [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Jiangsu Second Normal Univ, Sch Math Sci, Nanjing 211200, Peoples R China
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; Binomial differential equation; Non-linear differential equation; Entire solutions; ZEROS;
D O I
10.1007/s40315-024-00556-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the questions Gundersen and Yang proposed, we investigate the exact forms of the entire solutions of the following two types of binomial differential equations a(z)ff ''+b(z)(f ')2=c(z)e2q(z);a(z)f ' f ''+b(z)f2=c(z)e2q(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} a(z)ff''+b(z)(f')<^>2=c(z)e<^>{2q(z)}; \\ a(z)f'f''+b(z)f<^>2=c(z)e<^>{2q(z)}, \end{aligned}$$\end{document}where a, b, c are polynomials with no common zeros satisfying abc not equivalent to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$abc\not \equiv 0$$\end{document}, and q is a non-constant polynomial.
引用
收藏
页数:16
相关论文
共 50 条