Entire Solutions of Certain Type Binomial Differential Equations

被引:0
|
作者
Yang, Shuang-Shuang [1 ]
Liao, Liang-Wen [1 ]
Lu, Xiao-Qing [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Jiangsu Second Normal Univ, Sch Math Sci, Nanjing 211200, Peoples R China
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; Binomial differential equation; Non-linear differential equation; Entire solutions; ZEROS;
D O I
10.1007/s40315-024-00556-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the questions Gundersen and Yang proposed, we investigate the exact forms of the entire solutions of the following two types of binomial differential equations a(z)ff ''+b(z)(f ')2=c(z)e2q(z);a(z)f ' f ''+b(z)f2=c(z)e2q(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} a(z)ff''+b(z)(f')<^>2=c(z)e<^>{2q(z)}; \\ a(z)f'f''+b(z)f<^>2=c(z)e<^>{2q(z)}, \end{aligned}$$\end{document}where a, b, c are polynomials with no common zeros satisfying abc not equivalent to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$abc\not \equiv 0$$\end{document}, and q is a non-constant polynomial.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Entire solutions of certain type binomial differential equations
    Linlin Wu
    Manli Liu
    Peichu Hu
    Analysis and Mathematical Physics, 2023, 13
  • [2] Entire solutions of certain type binomial differential equations
    Wu, Linlin
    Liu, Manli
    Hu, Peichu
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [3] Entire solutions of certain type of differential equations
    Ping Li
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) : 253 - 259
  • [4] Entire Solutions of Binomial Differential Equations
    Gary G. Gundersen
    Chung-Chun Yang
    Computational Methods and Function Theory, 2021, 21 : 605 - 617
  • [5] Entire Solutions of Binomial Differential Equations
    Gundersen, Gary G.
    Yang, Chung-Chun
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2021, 21 (04) : 605 - 617
  • [6] ON ENTIRE SOLUTIONS OF A CERTAIN TYPE OF NONLINEAR DIFFERENTIAL EQUATIONS
    Lu, Xiaoqing
    Liao, Liangwen
    HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (02): : 463 - 477
  • [7] Entire solutions of certain type of differential equations II
    Li, Ping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) : 310 - 319
  • [8] On entire solutions of certain type of nonlinear differential equations
    Zhang, Fengrong
    Wu, Linlin
    Yang, Jing
    Lu, Weiran
    AIMS MATHEMATICS, 2020, 5 (06): : 6124 - 6134
  • [9] ENTIRE SOLUTIONS OF A CERTAIN TYPE OF NONLINEAR DIFFERENTIAL EQUATIONS
    Xie, Jia
    Gu, Yongyi
    Yuan, Wenjun
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (03): : 695 - 703
  • [10] Entire solutions of a class of binomial differential equations
    Wang, Zhuo
    Zhang, Qingcai
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (02) : 199 - 209