A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3

被引:0
|
作者
Fradi, Anis [1 ]
Samir, Chafik [2 ]
Adouani, Ines [3 ]
机构
[1] INRIA Bordeaux Sud Ouest, Geostat Team, Talence, France
[2] Univ Clermont Auvergne, LIMOS, CNRS, UMR 6158, F-63000 Clermont Ferrand, France
[3] Univ Sousse, Sousse, Tunisia
关键词
Riemannian optimization; Bayesian optimization; Spherical HMC; Parametrized surfaces; Spherical Gaussian processes; 3D; MANIFOLDS; GEOMETRY;
D O I
10.1007/s10957-024-02473-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.
引用
收藏
页码:1077 / 1100
页数:24
相关论文
共 50 条