Microwave catalytic pyrolysis of solid digestate for high quality bio-oil and biochar

被引:0
|
作者
An, Qing [1 ,2 ]
Liu, Yang [1 ,3 ]
Cao, Xiaobing [1 ]
Yang, Pu [1 ]
Cheng, Long [1 ]
Ghazani, Mohammad Shanb [1 ]
Suota, Maria Juliane [1 ]
Bi, Xiaotao [1 ]
机构
[1] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[2] Tongji Univ, Mech Engn Coll, Thermal & Environm Engn Inst, Shanghai 201800, Peoples R China
[3] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Solid digestate; Microwave pyrolysis; Catalytic pyrolysis; Bio-oil; Biochar; ASSISTED PYROLYSIS; BIOMASS; WASTE; SWITCHGRASS; CONVERSION;
D O I
10.1016/j.jaap.2024.106683
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microwave-assisted catalytic pyrolysis (MACP) of solid digestate (SD) into value-added products presents a promising solution for waste SD. Both types of catalysts and reactor temperature critically influence the properties of MACP products. This study systematically investigated pyrolysis of SD mixed with different catalysts (K3PO4, 3 PO 4 , natural zeolite, and mixture of K3PO4 3 PO 4 and natural zeolite) at various pyrolysis temperatures (300, 400, and 500 degrees C) for bio-oil and biochar production. The results showed that higher temperatures led to reduced biooil and biochar yields, favoring gas production. The bio-oil derived from SD with 20 wt% K3PO4 3 PO 4 and 20 wt% natural zeolite at 500 degrees C exhibited the largest fraction of aromatic hydrocarbons, reaching 92.43 % and 91.56%, respectively. Catalytic pyroysis resulted in reduction in bio-oil acidity. Biochar specific surface area is influenced by both heating rate and temperature, with the highest surface area (207 m2/g), 2 /g), pore volume (0.2244 cm3/g), 3 /g), and a more regular pore structure being obtained at 500 degrees C and 66.1 degrees C/min with 20 wt% K3PO4. 3 PO 4 . This work demonstrated the feasibility of upgrading waste SD into value-added chemicals, materials, and energy-rich fuels by MACP. Notably, SD with 20 wt% K3PO4 3 PO 4 at 500 degrees C represents the optimal operating condition for both bio-oil and biochar production.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Catalytic pyrolysis of rice husk for bio-oil production
    Abu Bakar, Muhammad S.
    Titiloye, James O.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 103 : 362 - 368
  • [32] Catalytic pyrolysis of Paulownia wood and bio-oil characterization
    Yildiz, Derya
    Yorgun, Sait
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 1626 - 1643
  • [33] Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production
    Suriapparao, Dadi V.
    Boruah, Bhanupriya
    Raja, Dharavath
    Vinu, R.
    FUEL PROCESSING TECHNOLOGY, 2018, 175 : 64 - 75
  • [34] Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil
    Ma, Chuantao
    Geng, Jiguo
    Zhang, Dong
    Ning, Xuefeng
    JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (01) : 303 - 311
  • [35] Production of bio-oil and biochar by the nitrogen-rich pyrolysis of cellulose with urea: Pathway of nitrile in bio-oil and evolution of nitrogen in biochar
    Yin, Mengqian
    Bi, Dongmei
    Zhao, Wenjing
    Liu, Jing
    Zhao, An
    Jiang, Mei
    Journal of Analytical and Applied Pyrolysis, 2023, 174
  • [36] A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds
    Li, Fanghua
    Srivatsa, Srikanth Chakravartula
    Bhattacharya, Sankar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 : 481 - 497
  • [37] Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil
    Chen, Minzi
    Zhang, Shuping
    Su, Yinhai
    Niu, Xin
    Zhu, Shuguang
    Liu, Xinzhi
    RENEWABLE ENERGY, 2022, 186 : 105 - 114
  • [38] Production of bio-oil and biochar by the nitrogen-rich pyrolysis of cellulose with urea: Pathway of nitrile in bio-oil and evolution of nitrogen in biochar
    Yin, Mengqian
    Bi, Dongmei
    Zhao, Wenjing
    Liu, Jing
    Zhao, An
    Jiang, Mei
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 174
  • [39] Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge
    Chen, Hongmei
    Zhai, Yunbo
    Xu, Bibo
    Xiang, Bobin
    Zhu, Lu
    Qiu, Lei
    Liu, Xiaoting
    Li, Caiting
    Zeng, Guangming
    ENVIRONMENTAL TECHNOLOGY, 2015, 36 (04) : 470 - 478
  • [40] Research progress on preparation of high quality bio-oil by pyrolysis of biomass
    Zhang L.
    Yao Z.
    Zhao L.
    Li Z.
    Yi W.
    Fu P.
    Yuan C.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (01): : 139 - 150