Research on 3C compliant assembly strategy method of manipulator based on deep reinforcement learning

被引:0
|
作者
Ma, Hang [1 ]
Zhang, Yuhang [1 ]
Li, Ziyang [1 ]
Zhang, Jiaqi [1 ]
Wu, Xibao [1 ]
Chen, Wenbai [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100101, Peoples R China
关键词
3C assembly task; Reward shaping; Reinforcement learning; Modeling of robotic arm; Physical constraints; DESIGN; STATE;
D O I
10.1016/j.compeleceng.2024.109605
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Addressing the issues of existing 3C assembly methods that rely on precise contact state models, low sampling efficiency, and poor safety, this paper proposes a research method for a manipulator-based 3C assembly strategy utilizing deep reinforcement learning. Initially, the study constructs a simulation task for 3C assembly involving a UR manipulator and flexible printed circuits (FPC) buckling within the MuJoCo development environment to mirror real-world assembly conditions. By incorporating a Gaussian distribution-based policy network suitable for continuous action spaces and employing the maximum entropy method to enhance the algorithm's exploratory capabilities, this study develops an efficient method for training autonomous assembly behavior strategies. We have successfully established a 3C assembly simulation environment that accurately simulates key physical parameters such as position, contact force, and torque, modeling the assembly task as a Markov decision process. Considering the semi-flexible nature of FPC, we control the magnitude of adaptive contact force to achieve compliant assembly of FPCs. Comprehensive simulation experiments demonstrate that the SAC algorithm proposed in this study enables the robot to autonomously and obediently complete the 3C assembly tasks, exhibiting good accuracy and stability. The assembly success rate reaches 93 %, and after training with the reinforcement learning strategy, the contact force meets the preset range, achieving the effect of compliant assembly.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] An Empirical Research on the Investment Strategy of Stock Market based on Deep Reinforcement Learning model
    Li, Yuming
    Ni, Pin
    Chang, Victor
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON COMPLEXITY, FUTURE INFORMATION SYSTEMS AND RISK (COMPLEXIS), 2019, : 52 - 58
  • [32] Research on international logistics supply chain management strategy based on deep reinforcement learning
    Wang Y.
    Wang J.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [33] Research and System Implementation of Quadruped Robot Following Strategy Based on Deep Reinforcement Learning
    Zhong, Peicheng
    Luo, Deyuan
    Pang, Mingjun
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (13): : 79 - 88
  • [34] Research on Energy Management Strategy of a Hybrid Commercial Vehicle Based on Deep Reinforcement Learning
    Xi, Jianguo
    Ma, Jingwei
    Wang, Tianyou
    Gao, Jianping
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (10):
  • [35] A Precision Advertising Strategy Based on Deep Reinforcement Learning
    Liang H.
    Ingenierie des Systemes d'Information, 2020, 25 (03): : 397 - 403
  • [36] A Stock Trading Strategy Based on Deep Reinforcement Learning
    Khemlichi, Firdaous
    Chougrad, Hiba
    Khamlichi, Youness Idrissi
    El Boushaki, Abdessamad
    Ben Ali, Safae El Haj
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 920 - 928
  • [37] Research on the Agricultural Machinery Path Tracking Method Based on Deep Reinforcement Learning
    Li, Hongchang
    Gao, Fang
    Zuo, GuoCai
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [38] Research on automatic pilot repetition generation method based on deep reinforcement learning
    Pan, Weijun
    Jiang, Peiyuan
    Li, Yukun
    Wang, Zhuang
    Huang, Junxiang
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [39] Research on ATO Control Method for Urban Rail Based on Deep Reinforcement Learning
    Chen, Xiaoqiang
    Guo, Xiao
    Meng, Jianjun
    Xu, Ruxun
    Li, Shanshan
    Li, Decang
    IEEE ACCESS, 2023, 11 : 5919 - 5928
  • [40] Research on Method of Collision Avoidance Planning for UUV Based on Deep Reinforcement Learning
    Gao, Wei
    Han, Mengxue
    Wang, Zhao
    Deng, Lihui
    Wang, Hongjian
    Ren, Jingfei
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (12)