Monitoring of fused filament fabrication (FFF): An infrared imaging and machine learning approach

被引:1
|
作者
Bauriedel, Niklas [1 ]
Albuquerque, Rodrigo Q. [1 ]
Utz, Julia [1 ]
Geis, Nico [2 ]
Ruckdaeschel, Holger [1 ,2 ,3 ]
机构
[1] Univ Bayreuth, Dept Polymer Engn, Bayreuth, Germany
[2] Neue Materialien Bayreuth GmbH, Div Polymers, Bayreuth, Germany
[3] Univ Bayreuth, Univstr 30, D-95447 Bayreuth, Germany
关键词
additive manufacturing; fused filament fabrication; IR imaging; machine learning; mechanical properties;
D O I
10.1002/pol.20240586
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Additive manufacturing holds great promise for broader future use, but quality assurance and component monitoring present notable challenges. This study tackles monitoring Fused Filament Fabrication (FFF) via infrared imaging to forecast the mechanical traits of 3D-printed items. It highlights how temperature variations, influenced by the infill's alternating orientation, affect printed parts' mechanical properties. Utilizing Machine Learning, notably the Random Forest Regressor, this research validates the capability to accurately predict tensile strength from infrared temperature readings, offering a simple, yet effective, real-time FFF monitoring method without specialized hardware. This approach enhances the quality and dependability of 3D-printed components with IR thermal monitoring and machine learning predictions.
引用
收藏
页码:5633 / 5641
页数:9
相关论文
共 50 条
  • [21] OPTIMIZATION OF DESIGN PROCESS OF FUSED FILAMENT FABRICATION (FFF) 3D PRINTING
    Kim, Jaeyoon
    Kang, Bruce S.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 2, 2019,
  • [22] Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts
    Tosto, Claudio
    Tirillo, Jacopo
    Sarasini, Fabrizio
    Cicala, Gianluca
    APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1
  • [23] Effects of Different Polypropylene (PP)-Backbones in Aluminium Feedstock for Fused Filament Fabrication (FFF)
    Momeni, Vahid
    Shahroodi, Zahra
    Gonzalez-Gutierrez, Joamin
    Hentschel, Lukas
    Duretek, Ivica
    Schuschnigg, Stephan
    Kukla, Christian
    Holzer, Clemens
    POLYMERS, 2023, 15 (14)
  • [24] Tool Path Generation for Layer Specific Infill Density in Fused Filament Fabrication (FFF)
    Krishnanand
    Nayak, Ankit
    Soni, Shivam
    Taufik, Mohammad
    RECENT ADVANCES IN INDUSTRIAL PRODUCTION, ICEM 2020, 2022, : 261 - 268
  • [25] Manufacturing of hybrid drug delivery systems by utilizing the fused filament fabrication (FFF) technology
    Eleftheriadis, Georgios K.
    Katsiotis, Christos S.
    Genina, Natalja
    Boetker, Johan
    Rantanen, Jukka
    Fatouros, Dimitrios G.
    EXPERT OPINION ON DRUG DELIVERY, 2020, 17 (08) : 1063 - 1067
  • [26] PP/organoclay nanocomposites for fused filament fabrication (FFF) 3D printing
    Aumnate, C.
    Limpanart, S.
    Soatthiyanon, N.
    Khunton, S.
    EXPRESS POLYMER LETTERS, 2019, 13 (10): : 898 - 909
  • [27] In situ monitoring for fused filament fabrication process: A review
    Fu, Yanzhou
    Downey, Austin
    Yuan, Lang
    Pratt, Avery
    Balogun, Yunusa
    ADDITIVE MANUFACTURING, 2021, 38
  • [28] Novel Technique Based on Fused Filament Fabrication (FFF) and Robocasting to Create Composite Medical Parts
    Sanchez Ramirez, Alberto
    D'Amato, Roberto
    Blaya Haro, Fernando
    Islan Marcos, Manuel
    Juanes, Juan A.
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (05)
  • [29] Influence of Glass Fibers on the Processability and Mechanical Properties of PP Homopolymer for Fused Filament Fabrication (FFF)
    Utz, Julia
    Geis, Nico
    Baur, Maximilian
    Ruckdaeschel, Holger
    PROCEEDINGS OF THE 36TH CONFERENCE OF THE POLYMER PROCESSING SOCIETY, PPS36, 2023, 2607
  • [30] A review of fused filament fabrication (FFF): Process parameters and their impact on the tribological behavior of polymers (ABS)
    Kaur, Gulshan
    Singari, Ranganath M.
    Kumar, Harish
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 854 - 860