Dual adaptive local semantic alignment for few-shot fine-grained classification

被引:0
|
作者
Song, Wei [1 ]
Yang, Kaili [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Peoples R China
来源
关键词
Few-shot learning; Semantic details; Local feature alignment; Fine-grained image classification; NETWORK; SYSTEM;
D O I
10.1007/s00371-024-03576-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Few-shot fine-grained classification (FS-FGC) aims to learn discriminative semantic details (e.g., beaks and wings) with few labeled samples to precisely recognize novel classes. However, existing feature alignment methods mainly use a support set to align the query sample, which may lead to incorrect alignment of local semantic due to interference from background and non-target objects. In addition, these methods do not take into account the discrepancy of semantic information among channels. To address the above issues, we propose an effective dual adaptive local semantic alignment approach, which is composed of the channel semantic alignment module (CSAM) and the spatial semantic alignment module (SSAM). Specifically, CSAM adaptively generates channel weights to highlight discriminative information based on two sub-modules, namely the class-aware attention module and the target-aware attention module. CAM emphasizes the discriminative semantic details of each category in the support set and TAM enhances the target object region of the query image. On the basis of this, SSAM promotes effective alignment of semantically relevant local regions through a spatial bidirectional alignment strategy. Combining two adaptive modules to better capture fine-grained semantic contextual information along two dimensions, channel and spatial improves the accuracy and robustness of FS-FGC. Experimental results on three widely used fine-grained classification datasets demonstrate excellent performance that has significant competitive advantages over current mainstream methods. Codes are available at: https://github.com/kellyagya/DALSA.
引用
下载
收藏
页码:2923 / 2937
页数:15
相关论文
共 50 条
  • [21] Power Normalizations in Fine-Grained Image, Few-Shot Image and Graph Classification
    Koniusz, Piotr
    Zhang, Hongguang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) : 591 - 609
  • [22] Attentive fine-grained recognition for cross-domain few-shot classification
    Sa, Liangbing
    Yu, Chongchong
    Ma, Xianqin
    Zhao, Xia
    Xie, Tao
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06): : 4733 - 4746
  • [23] Attentive fine-grained recognition for cross-domain few-shot classification
    Liangbing Sa
    Chongchong Yu
    Xianqin Ma
    Xia Zhao
    Tao Xie
    Neural Computing and Applications, 2022, 34 : 4733 - 4746
  • [24] Few-Shot Learning for Domain-Specific Fine-Grained Image Classification
    Sun, Xin
    Xv, Hongwei
    Dong, Junyu
    Zhou, Huiyu
    Chen, Changrui
    Li, Qiong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (04) : 3588 - 3598
  • [25] Transformer-Based Few-Shot and Fine-Grained Image Classification Method
    Lu, Yan
    Wang, Yangping
    Wang, Wenrun
    Computer Engineering and Applications, 2023, 59 (23) : 219 - 227
  • [26] An Unbiased Feature Estimation Network for Few-Shot Fine-Grained Image Classification
    Wang, Jiale
    Lu, Jin
    Yang, Junpo
    Wang, Meijia
    Zhang, Weichuan
    Sensors, 2024, 24 (23)
  • [27] Task-specific Part Discovery for Fine-grained Few-shot Classification
    Wei, Yongxian
    Wei, Xiu-Shen
    MACHINE INTELLIGENCE RESEARCH, 2024, 21 (05) : 954 - 965
  • [28] Learning Cross-Image Object Semantic Relation in Transformer for Few-Shot Fine-Grained Image Classification
    Zhang, Bo
    Yuan, Jiakang
    Li, Baopu
    Chen, Tao
    Fan, Jiayuan
    Shi, Botian
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2135 - 2144
  • [29] FINE GRAINED FEW-SHOT CLASSIFICATION WITH CONTRASTIVE CLUES
    Banerjee, Anoushka
    Dinesh, Dileep Aroor
    Bhavsar, Arnav
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [30] KLSANet: Key local semantic alignment Network for few-shot image classification
    Sun, Zhe
    Zheng, Wang
    Guo, Pengfei
    NEURAL NETWORKS, 2024, 178