Dual adaptive local semantic alignment for few-shot fine-grained classification

被引:0
|
作者
Song, Wei [1 ]
Yang, Kaili [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Peoples R China
来源
关键词
Few-shot learning; Semantic details; Local feature alignment; Fine-grained image classification; NETWORK; SYSTEM;
D O I
10.1007/s00371-024-03576-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Few-shot fine-grained classification (FS-FGC) aims to learn discriminative semantic details (e.g., beaks and wings) with few labeled samples to precisely recognize novel classes. However, existing feature alignment methods mainly use a support set to align the query sample, which may lead to incorrect alignment of local semantic due to interference from background and non-target objects. In addition, these methods do not take into account the discrepancy of semantic information among channels. To address the above issues, we propose an effective dual adaptive local semantic alignment approach, which is composed of the channel semantic alignment module (CSAM) and the spatial semantic alignment module (SSAM). Specifically, CSAM adaptively generates channel weights to highlight discriminative information based on two sub-modules, namely the class-aware attention module and the target-aware attention module. CAM emphasizes the discriminative semantic details of each category in the support set and TAM enhances the target object region of the query image. On the basis of this, SSAM promotes effective alignment of semantically relevant local regions through a spatial bidirectional alignment strategy. Combining two adaptive modules to better capture fine-grained semantic contextual information along two dimensions, channel and spatial improves the accuracy and robustness of FS-FGC. Experimental results on three widely used fine-grained classification datasets demonstrate excellent performance that has significant competitive advantages over current mainstream methods. Codes are available at: https://github.com/kellyagya/DALSA.
引用
下载
收藏
页码:2923 / 2937
页数:15
相关论文
共 50 条
  • [1] Fine-Grained Few-Shot Image Classification Based on Feature Dual Reconstruction
    Liu, Shudong
    Zhong, Wenlong
    Guo, Furong
    Cong, Jia
    Gu, Boyu
    ELECTRONICS, 2024, 13 (14)
  • [2] Feature alignment via mutual mapping for few-shot fine-grained visual classification
    Wu, Qin
    Song, Tingting
    Fan, Shengnan
    Chen, Zeda
    Jin, Kelei
    Zhou, Haojie
    IMAGE AND VISION COMPUTING, 2024, 147
  • [3] Few-Shot Fine-Grained Image Classification: A Comprehensive Review
    Ren, Jie
    Li, Changmiao
    An, Yaohui
    Zhang, Weichuan
    Sun, Changming
    AI, 2024, 5 (01) : 405 - 425
  • [4] Dual Attention Networks for Few-Shot Fine-Grained Recognition
    Xu, Shu-Lin
    Zhang, Faen
    Wei, Xiu-Shen
    Wang, Jianhua
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2911 - 2919
  • [5] Few-Shot Fine-Grained Image Classification via GNN
    Zhou, Xiangyu
    Zhang, Yuhui
    Wei, Qianru
    SENSORS, 2022, 22 (19)
  • [6] Variational Feature Disentangling for Fine-Grained Few-Shot Classification
    Xu, Jingyi
    Le, Hieu
    Huang, Mingzhen
    Athar, ShahRukh
    Samaras, Dimitris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8792 - 8801
  • [7] Few-shot fine-grained classification with Spatial Attentive Comparison
    Ruan, Xiaoqian
    Lin, Guosheng
    Long, Cheng
    Lu, Shengli
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [8] Task Discrepancy Maximization for Fine-grained Few-Shot Classification
    Lee, SuBeen
    Moon, WonJun
    Heo, Jae-Pil
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5321 - 5330
  • [9] A few-shot fine-grained image classification method leveraging global and local structures
    Siyu Cao
    Wen Wang
    Jing Zhang
    Min Zheng
    Qingyong Li
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 2273 - 2281
  • [10] A few-shot fine-grained image classification method leveraging global and local structures
    Cao, Siyu
    Wang, Wen
    Zhang, Jing
    Zheng, Min
    Li, Qingyong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (08) : 2273 - 2281