An ensemble deep learning model for predicting minimum inhibitory concentrations of antimicrobial peptides against pathogenic bacteria

被引:1
|
作者
Chung, Chia-Ru [1 ]
Chien, Chung-Yu [1 ]
Tang, Yun [2 ]
Wu, Li-Ching [3 ]
Hsu, Justin Bo-Kai [4 ]
Lu, Jang-Jih [5 ,6 ,7 ]
Lee, Tzong-Yi [2 ,8 ]
Bai, Chen [9 ]
Horng, Jorng-Tzong [1 ,5 ]
机构
[1] Natl Cent Univ, Dept Comp Sci & Informat Engn, Taoyuan, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu, Taiwan
[3] Natl Cent Univ, Dept Biomed Sci & Engn, Taoyuan, Taiwan
[4] Yuan Ze Univ, Dept Comp Sci & Engn, Taoyuan, Taiwan
[5] Chang Gung Mem Hosp Linkou, Dept Lab Med, Taoyuan, Taiwan
[6] Chang Gung Univ, Sch Med, Taoyuan, Taiwan
[7] Chang Gung Univ, Dept Med Biotechnol & Lab Sci, Taoyuan, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS2B, Hsinchu, Taiwan
[9] Chinese Univ Hong Kong Shenzhen, Warshel Inst Computat Biol, Sch Med, Shenzhen 518172, Peoples R China
关键词
D O I
10.1016/j.isci.2024.110718
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rise of antibiotic resistance necessitates effective alternative therapies. Antimicrobial peptides (AMPs) are promising due to their broad inhibitory effects. This study focuses on predicting the minimum inhibitory concentration (MIC) of AMPs against whom-priority pathogens: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. We developed a comprehensive regression model integrating AMP sequence-based and genomic features. Using eight AI-based architectures, including deep learning with protein language model embeddings, we created an ensemble model combining bi-directional long short-term memory (BiLSTM), convolutional neural network (CNN), and multi-branch model (MBM). The ensemble model showed superior performance with Pearson correlation coefficients of 0.756, 0.781, and 0.802 for the bacterial strains, demonstrating its accuracy in predicting MIC values. This work sets a foundation for future studies to enhance model performance and advance AMP applications in combating antibiotic resistance.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Modifications on amphiphilicity and cationicity of unnatural amino acid containing peptides for the improvement of antimicrobial activity against pathogenic bacteria
    Taira, Junichi
    Kida, Yutaka
    Yamaguchi, Hiroshi
    Kuwano, Koichi
    Higashimoto, Yuichiro
    Kodama, Hiroaki
    JOURNAL OF PEPTIDE SCIENCE, 2010, 16 (11) : 607 - 612
  • [32] Predictive Model of Linear Antimicrobial Peptides Active against Gram-Negative Bacteria
    Vishnepolsky, Boris
    Gabrielian, Andrei
    Rosenthal, Alex
    Hurt, Darrell E.
    Tartakovsky, Michael
    Managadze, Grigol
    Grigolava, Maya
    Makhatadze, George, I
    Pirtskhalava, Malak
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (05) : 1141 - 1151
  • [33] An Ensemble Deep Learning Model for Forecasting Hourly PM2.5 Concentrations
    Mohan, Anju S.
    Abraham, Lizy
    IETE JOURNAL OF RESEARCH, 2023, 69 (10) : 6832 - 6845
  • [34] Discovery of antimicrobial peptides from Bacillus genomes against phytopathogens with deep learning models
    Su, Huan
    Gu, Mengli
    Qu, Zechao
    Wang, Qiao
    Jin, Jingjing
    Lu, Peng
    Zhang, Jianfeng
    Cao, Peijian
    Ren, Xueliang
    Tao, Jiemeng
    Li, Boyang
    CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE, 2025, 12 (01)
  • [35] Minimum inhibitory and bactericidal concentrations of technical lignins against environmental bacteria causing mastitis in lactating dairy cattle
    Oppong, G.
    Romero, J.
    Ma, Z.
    Jeong, K.
    Killerby, M.
    JOURNAL OF DAIRY SCIENCE, 2022, 105 : 407 - 407
  • [36] BERT-AmPEP60: A BERT-Based Transfer Learning Approach to Predict the Minimum Inhibitory Concentrations of Antimicrobial Peptides for Escherichia coli and Staphylococcus aureus
    Cai, Jianxiu
    Yan, Jielu
    Un, Chonwai
    Wang, Yapeng
    Campbell-Valois, Francois-Xavier
    Siu, Shirley W. I.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025,
  • [37] LMPred: predicting antimicrobial peptides using pre-trained language models and deep learning
    Dee, William
    Gromiha, Michael
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [38] Hybrid Network Model for "Deep Learning" of Chemical Data: Application to Antimicrobial Peptides
    Schneider, Petra
    Mueller, Alex T.
    Gabernet, Gisela
    Button, Alexander L.
    Posselt, Gernot
    Wessler, Silja
    Hiss, Jan A.
    Schneider, Gisbert
    MOLECULAR INFORMATICS, 2017, 36 (1-2)
  • [39] Minimum inhibitory concentrations for selected antimicrobial agents against Fusobacterium necrophorum isolated from hepatic abscesses in cattle and sheep
    Mateos, E
    Piriz, S
    Valle, J
    Hurtado, M
    Vadillo, S
    JOURNAL OF VETERINARY PHARMACOLOGY AND THERAPEUTICS, 1997, 20 (01) : 21 - 23
  • [40] Minimum inhibitory concentrations of 20 antimicrobial agents against Staphylococcus aureus isolated from bovine intramammary infections in Japan
    Yoshimura, H
    Ishimaru, M
    Kojima, A
    JOURNAL OF VETERINARY MEDICINE SERIES B-INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH, 2002, 49 (09): : 457 - 460