An ensemble deep learning model for predicting minimum inhibitory concentrations of antimicrobial peptides against pathogenic bacteria

被引:1
|
作者
Chung, Chia-Ru [1 ]
Chien, Chung-Yu [1 ]
Tang, Yun [2 ]
Wu, Li-Ching [3 ]
Hsu, Justin Bo-Kai [4 ]
Lu, Jang-Jih [5 ,6 ,7 ]
Lee, Tzong-Yi [2 ,8 ]
Bai, Chen [9 ]
Horng, Jorng-Tzong [1 ,5 ]
机构
[1] Natl Cent Univ, Dept Comp Sci & Informat Engn, Taoyuan, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu, Taiwan
[3] Natl Cent Univ, Dept Biomed Sci & Engn, Taoyuan, Taiwan
[4] Yuan Ze Univ, Dept Comp Sci & Engn, Taoyuan, Taiwan
[5] Chang Gung Mem Hosp Linkou, Dept Lab Med, Taoyuan, Taiwan
[6] Chang Gung Univ, Sch Med, Taoyuan, Taiwan
[7] Chang Gung Univ, Dept Med Biotechnol & Lab Sci, Taoyuan, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS2B, Hsinchu, Taiwan
[9] Chinese Univ Hong Kong Shenzhen, Warshel Inst Computat Biol, Sch Med, Shenzhen 518172, Peoples R China
关键词
D O I
10.1016/j.isci.2024.110718
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rise of antibiotic resistance necessitates effective alternative therapies. Antimicrobial peptides (AMPs) are promising due to their broad inhibitory effects. This study focuses on predicting the minimum inhibitory concentration (MIC) of AMPs against whom-priority pathogens: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. We developed a comprehensive regression model integrating AMP sequence-based and genomic features. Using eight AI-based architectures, including deep learning with protein language model embeddings, we created an ensemble model combining bi-directional long short-term memory (BiLSTM), convolutional neural network (CNN), and multi-branch model (MBM). The ensemble model showed superior performance with Pearson correlation coefficients of 0.756, 0.781, and 0.802 for the bacterial strains, demonstrating its accuracy in predicting MIC values. This work sets a foundation for future studies to enhance model performance and advance AMP applications in combating antibiotic resistance.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Dendritic Antimicrobial Peptides against Pathogenic Bacteria
    Stach, M.
    Darbre, T.
    Reymond, J-L
    BIOPOLYMERS, 2013, 100 (03) : 260 - 260
  • [2] A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against Escherichia coli using Multi-Branch-CNN and Attention
    Yan, Jielu
    Zhang, Bob
    Zhou, Mingliang
    Campbell-Valois, Francois-Xavier
    Siu, Shirley W. I.
    MSYSTEMS, 2023, 8 (04)
  • [3] AGRAMP: machine learning models for predicting antimicrobial peptides against phytopathogenic bacteria
    Shao, Jonathan
    Zhao, Yan
    Wei, Wei
    Vaisman, Iosif I.
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [4] Minimum inhibitory concentrations of some antimicrobial drugs against bacteria causing uterine infections in cattle
    Sheldon, IM
    Bushnell, M
    Montgomery, J
    Rycroft, AN
    VETERINARY RECORD, 2004, 155 (13) : 383 - +
  • [5] Minimum inhibitory concentrations of commercial essential oils against common chicken pathogenic bacteria and their relationship with antibiotic resistance
    Nguyen Thi Bich Van
    On Thuong Vi
    Nguyen Thi Phuong Yen
    Nguyen Thi Nhung
    Nguyen Van Cuong
    Bach Tuan Kiet
    Nguyen Van Hoang
    Vo Be Hien
    Thwaites, Guy
    Campell, James
    Choisy, Marc
    Carrique-Mas, Juan
    JOURNAL OF APPLIED MICROBIOLOGY, 2022, 132 (02) : 1025 - 1035
  • [6] Mechanisms of Antimicrobial Peptides from Bagasse against Human Pathogenic Bacteria
    Ditsawanon, Thitiporn
    Phaonakrob, Narumon
    Roytrakul, Sittiruk
    ANTIBIOTICS-BASEL, 2023, 12 (03):
  • [7] Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria
    Ebbensgaard, Anna
    Mordhorst, Hanne
    Overgaard, Michael Toft
    Nielsen, Claus Gyrup
    Aarestrup, Frank Moller
    Hansen, Egon Bech
    PLOS ONE, 2015, 10 (12):
  • [8] Growth-inhibitory activity of antimicrobial peptides from rice against oral pathogenic bacteria and clarification of their action mechanism
    Kouya, Tomoaki
    Koiso, Yusuke
    Taiyouji, Mayumi
    Ohtsubo, Sadami
    Tanaka, Takaaki
    Taniguchi, Masayuki
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2009, 108 : S141 - S141
  • [9] Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning
    Guan, Jiahui
    Yao, Lantian
    Chung, Chia-Ru
    Xie, Peilin
    Zhang, Yilun
    Deng, Junyang
    Chiang, Ying-Chih
    Lee, Tzong-Yi
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (24) : 7886 - 7898
  • [10] Triazole-Bridged Peptides with Enhanced Antimicrobial Activity and Potency against Pathogenic Bacteria
    Grabeck, Joshua
    Mayer, Jacob
    Miltz, Axel
    Casoria, Michele
    Quagliata, Michael
    Meinberger, Denise
    Klatt, Andreas R.
    Wielert, Isabelle
    Maier, Berenike
    Papini, Anna Maria
    Neundorf, Ines
    ACS INFECTIOUS DISEASES, 2024, 10 (08): : 2717 - 2727