Enhancing Hypotension Prediction in Real-Time Patient Monitoring Through Deep Learning: A Novel Application of XResNet with Contrastive Learning and Value Attention Mechanisms

被引:0
|
作者
Chen, Xiangru [1 ]
Hauskrecht, Milos [1 ]
机构
[1] Univ Pittsburgh, Comp Sci Dept, Pittsburgh, PA 15260 USA
关键词
Hypotension prediction; Contrastive learning; Real-time monitoring;
D O I
10.1007/978-3-031-66538-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The precise prediction of hypotension is vital for advancing preemptive patient care strategies. Traditional machine learning approaches, while instrumental in this field, are hampered by their dependence on structured historical data and manual feature extraction techniques. These methods often fall short of recognizing the intricate patterns present in physiological signals. Addressing this limitation, our study introduces an innovative application of deep learning technologies, utilizing a sophisticated end-to-end architecture grounded in XResNet. This architecture is further enhanced by the integration of contrastive learning and a value attention mechanism, specifically tailored to analyze arterial blood pressure (ABP) waveform signals. Our approach improves the performance of hypotension prediction over the existing state-of-the-art ABP model [7]. This research represents a step towards optimizing patient care, embodying the next generation of AI-driven healthcare solutions. Through our findings, we demonstrate the promise of deep learning in overcoming the limitations of conventional prediction models, thereby offering an avenue for enhancing patient outcomes in clinical settings.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 50 条
  • [31] Real-time data visual monitoring of triboelectric nanogenerators enabled by Deep learning
    Zhang, Huiya
    Liu, Tao
    Zou, Xuelian
    Zhu, Yunpeng
    Chi, Mingchao
    Wu, Di
    Jiang, Keyang
    Zhu, Sijia
    Zhai, Wenxia
    Wang, Shuangfei
    Nie, Shuangxi
    Wang, Zhiwei
    NANO ENERGY, 2024, 130
  • [32] Real-time monitoring system of cyanobacteria blooms using deep learning approach
    LiFang Chen
    Yu Shi
    YuanXin Du
    Multimedia Tools and Applications, 2022, 81 : 42413 - 42431
  • [33] Sleep Deprivation Detection for Real-Time Driver Monitoring Using Deep Learning
    Garcia-Garcia, Miguel
    Caplier, Alice
    Rombaut, Michele
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 435 - 442
  • [34] Design of a real-time crime monitoring system using deep learning techniques
    Mukto, Md. Muktadir
    Hasan, Mahamudul
    Al Mahmud, Md. Maiyaz
    Haque, Ikramul
    Ahmed, Md. Ahsan
    Jabid, Taskeed
    Ali, Md. Sawkat
    Rashid, Mohammad Rifat Ahmmad
    Islam, Mohammad Manzurul
    Islam, Maheen
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 21
  • [36] A Real-Time ATC Safety Monitoring Framework Using a Deep Learning Approach
    Lin, Yi
    Deng, Linjie
    Chen, Zhengmao
    Wu, Xiping
    Zhang, Jianwei
    Yang, Bo
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (11) : 4572 - 4581
  • [37] DEEP LEARNING BASED REAL-TIME FACIAL MASK DETECTION AND CROWD MONITORING
    Yang, Chan-Yun
    Samani, Hooman
    Ji, Nana
    Li, Chunxu
    Chen, Ding-Bang
    Qi, Man
    COMPUTING AND INFORMATICS, 2021, 40 (06) : 1263 - 1294
  • [38] Camera fusion for real-time temperature monitoring of neonates using deep learning
    Lyra, Simon
    Rixen, Joeran
    Heimann, Konrad
    Karthik, Srinivasa
    Joseph, Jayaraj
    Jayaraman, Kumutha
    Orlikowsky, Thorsten
    Sivaprakasam, Mohanasankar
    Leonhardt, Steffen
    Hoog Antink, Christoph
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (06) : 1787 - 1800
  • [39] Real-time monitoring system of cyanobacteria blooms using deep learning approach
    Chen, LiFang
    Shi, Yu
    Du, YuanXin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42413 - 42431
  • [40] Camera fusion for real-time temperature monitoring of neonates using deep learning
    Simon Lyra
    Jöran Rixen
    Konrad Heimann
    Srinivasa Karthik
    Jayaraj Joseph
    Kumutha Jayaraman
    Thorsten Orlikowsky
    Mohanasankar Sivaprakasam
    Steffen Leonhardt
    Christoph Hoog Antink
    Medical & Biological Engineering & Computing, 2022, 60 : 1787 - 1800