Effect of CO2 Elevation on Tomato Gas Exchange, Root Morphology and Water Use Efficiency under Two N-Fertigation Levels

被引:1
|
作者
Zhang, Manyi [1 ]
Zhao, Wentong [1 ]
Liu, Chunshuo [1 ]
Xu, Changtong [1 ]
Wei, Guiyu [1 ]
Cui, Bingjing [1 ,2 ]
Hou, Jingxiang [3 ]
Wan, Heng [1 ,4 ]
Chen, Yiting [2 ]
Zhang, Jiarui [1 ]
Wei, Zhenhua [1 ]
机构
[1] Northwest A&F Univ, Minist Educ, Key Lab Agr Soil & Water Engn Arid & Semiarid Area, Yangling 712100, Peoples R China
[2] Univ Copenhagen, Fac Sci, Dept Plant & Environm Sci, Hojbakkegaard 13, DK-2630 Taastrup, Denmark
[3] State Key Lab Efficient Utilizat Agr Water Resourc, Beijing 100083, Peoples R China
[4] Wageningen Univ, Soil Phys & Land Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands
来源
PLANTS-BASEL | 2024年 / 13卷 / 17期
基金
中国国家自然科学基金;
关键词
elevated CO2; N-fertigation; gas exchange; root morphology; water use efficiency; tomato; NITROGEN USE EFFICIENCY; IRRIGATION REGIMES; DRIP FERTIGATION; POTATO LEAVES; L; NUTRITION; PRODUCTIVITY; RESPONSES; STRESS; PLANTS;
D O I
10.3390/plants13172373
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Atmospheric elevated CO2 concentration (e[CO2]) decreases plant nitrogen (N) concentration while increasing water use efficiency (WUE), fertigation increases crop nutrition and WUE in crop; yet the interactive effects of e[CO2] coupled with two N-fertigation levels during deficit irrigation on plant gas exchange, root morphology and WUE remain largely elusive. The objective of this study was to explore the physiological and growth responses of ambient [CO2] (a[CO2], 400 ppm) and e[CO2] (800 ppm) tomato plant exposed to two N-fertigation regimes: (1) full irrigation during N-fertigation (FIN); (2) deficit irrigation during N-fertigation (DIN) under two N fertilizer levels (reduced N (N1, 0.5 g pot(-1)) and adequate N (N2, 1.0 g pot(-1)). The results indicated that e[CO2] associated with DIN regime induced the lower N2 plant water use (7.28 L plant(-1)), maintained leaf water potential (-5.07 MPa) and hydraulic conductivity (0.49 mol m(-2) s(-1) MPa-1), greater tomato growth in terms of leaf area (7152.75 cm(2)), specific leaf area (223.61 cm(2) g(-1)), stem and total dry matter (19.54 g and 55.48 g). Specific root length and specific root surface area were increased under N1 fertilization, and root tissue density was promoted in both e[CO2] and DIN environments. Moreover, a smaller and denser leaf stomata (4.96 mu m(2) and 5.37 mm(-2)) of N1 plant was obtained at e[CO2] integrated with DIN strategy. Meanwhile, this combination would simultaneously reduce stomatal conductance (0.13 mol m(-2) s(-1)) and transpiration rate (1.91 mmol m(-2) s(-1)), enhance leaf ABA concentration (133.05 ng g(-1) FW), contributing to an improvement in WUE from stomatal to whole-plant scale under each N level, especially for applying N1 fertilization (125.95 mu mol mol(-1), 8.41 mu mol mmol(-1) and 7.15 g L-1). These findings provide valuable information to optimize water and nitrogen fertilizer management and improve plant water use efficiency, responding to the potential resource-limited and CO2-enriched scenario.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2
    Johnson, JD
    Tognetti, R
    Paris, P
    PHYSIOLOGIA PLANTARUM, 2002, 115 (01) : 93 - 100
  • [22] Root Growth, Fruit Yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels
    Wang, Xiukang
    Yun, Jia
    Shi, Peng
    Li, Zhanbin
    Li, Peng
    Xing, Yingying
    JOURNAL OF PLANT GROWTH REGULATION, 2019, 38 (02) : 400 - 415
  • [23] Root Growth, Fruit Yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels
    Xiukang Wang
    Jia Yun
    Peng Shi
    Zhanbin Li
    Peng Li
    Yingying Xing
    Journal of Plant Growth Regulation, 2019, 38 : 400 - 415
  • [24] Water use of two Mojave Desert shrubs under elevated CO2
    Pataki, DE
    Huxman, TE
    Jordan, DN
    Zitzer, SF
    Coleman, JS
    Smith, SD
    Nowak, RS
    Seemann, JR
    GLOBAL CHANGE BIOLOGY, 2000, 6 (08) : 889 - 897
  • [25] The potential implications of a plasma membrane aquaporin in improving CO2 transport capacity, photosynthetic potential and water use efficiency under contrasting CO2 source in Solanum lycopersicum (tomato)
    Zhang, Dalong
    Li, Yunzhou
    Li, Yiman
    SCIENTIA HORTICULTURAE, 2021, 283
  • [26] Gas exchange, biomass allocation and water-use efficiency in response to elevated CO2 and drought in andiroba (Carapa surinamensis, Meliaceae)
    de Oliveira, Marcilia Freitas
    Marenco, Ricardo Antonio
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2019, 12 : 61 - 68
  • [27] Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels
    Wu, DX
    Wang, GX
    Bai, YF
    Liao, JX
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2004, 104 (03) : 493 - 507
  • [28] Elevated CO2 and water-availability effect on gas exchange and nodule development in N2-fixing alfalfa plants
    Aranjuelo, Iker
    Irigoyen, Juan Jose
    Nogues, Salvador
    Sanchez-Diaz, Manuel
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2009, 65 (01) : 18 - 26
  • [29] Precipitation alters the CO2 effect on water-use efficiency of temperate forests
    Belmecheri, Soumaya
    Maxwell, R. Stockton
    Taylor, Alan H.
    Davis, Kenneth J.
    Guerrieri, Rossella
    Moore, David J. P.
    Rayback, Shelly A.
    GLOBAL CHANGE BIOLOGY, 2021, 27 (08) : 1560 - 1571
  • [30] Effect of elevated ambient CO2 concentration on water use efficiency ofPinus sylvestriformis
    Han Shijie
    Zhang Junhui
    Wang Chenrui
    Zou Chunjing
    Zhou Yumei
    Wang Xiaochun
    Journal of Forestry Research, 1999, 10 (4) : 209 - 210