Multimodal ML Strategies for Wind Turbine Condition Monitoring in Heterogeneous IoT Data Environments

被引:0
|
作者
Jameel, Syed Shahryar [1 ]
Raazi, Syed Muhammad Khaliq-ur-Rahman [1 ]
Jameel, Syed Muslim [2 ]
机构
[1] Muhammad Ali Jinnah Univ MAJU, Karachi, Pakistan
[2] Atlantic Technol Univ, Galway, Ireland
关键词
Artificial Intelligence of Things; Renewable Energy; Wind Turbines; Condition Monitoring; Multi-Modal ML; DAMAGE DETECTION; FRAMEWORK; FUSION;
D O I
10.1007/978-3-031-62871-9_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Addressing the pressing need for efficient wind turbine monitoring in the sustainable energy sector, this paper begins with an extensive literature review focused on condition monitoring techniques specific to wind turbines. This foundational review uncovers significant gaps, particularly in managing diverse and voluminous data streams that are characteristic of wind turbine operations. The core objective of this research is to thoroughly analyze the unique characteristics of heterogeneous data environments in wind turbine monitoring, tackling challenges like data diversity, volume, and reliability, where their effectiveness in interpreting complex data is scrutinized. This analysis provides critical insights into the applicability of these models in practical monitoring situations. Further, the research broadens its scope to assess the implications of these findings within the Artificial Intelligence of Things (AIoT) domain. It highlights the potential of AI and IoT integration in revolutionizing wind turbine monitoring, leading to smarter, more resilient renewable energy systems. The study sets a foundation for future advancements in AIoT, especially in enhancing the efficiency and intelligence of renewable energy infrastructures. It paves the way for the development of more sophisticated AI-driven tools for energy management, envisioning a future where renewable energy systems are managed with greater efficiency and intelligence.
引用
收藏
页码:216 / 228
页数:13
相关论文
共 50 条
  • [1] Wind turbine condition monitoring
    Sheng, Shuangwen
    WIND ENERGY, 2014, 17 (05) : 671 - 672
  • [2] An acoustic emission IoT device for wind turbine rotor blade condition monitoring
    Mistras Group Inc, United States
    不详
    eJ. Nondestruct. Test., 2023, 8
  • [3] Using SCADA data for wind turbine condition monitoring - a review
    Tautz-Weinert, Jannis
    Watson, Simon J.
    IET RENEWABLE POWER GENERATION, 2017, 11 (04) : 382 - 394
  • [4] Wind Turbine Condition Monitoring based on SCADA Data Analysis
    Yin, Haolin
    Jia, Rong
    Ma, Fuqi
    Wang, Dameng
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 1101 - 1105
  • [5] Wind Turbine Condition Monitoring Based on SCADA Data Analysis
    Zhang, Jing-Hao
    Hu, Ya-Xin
    Ma, Jiao-Jiao
    Zhen, Dong
    Shi, Zhan-Qun
    2015 INTERNATIONAL CONFERENCE ON MECHANICAL SCIENCE AND MECHANICAL DESIGN, MSMD 2015, 2015, : 162 - 169
  • [6] Wind turbine condition monitoring by the approach of SCADA data analysis
    Yang, Wenxian
    Court, Richard
    Jiang, Jiesheng
    RENEWABLE ENERGY, 2013, 53 : 365 - 376
  • [7] Comparison of methods for wind turbine condition monitoring with SCADA data
    Wilkinson, Michael
    Darnell, Brian
    van Delft, Thomas
    Harman, Keir
    IET RENEWABLE POWER GENERATION, 2014, 8 (04) : 390 - 397
  • [8] Wind Turbine Spindle Condition Monitoring Based on Operational Data
    Wang, Zhao-guang
    Guo, Peng
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 1435 - 1440
  • [9] Wind Turbine Condition Monitoring Using SCADA Data and Data Mining Method
    Pei, Yan
    Qian, Zheng
    Tao, Siyu
    Yu, Hao
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 3760 - 3764
  • [10] Modeling and Development of Wind Turbine Emulator for the Condition Monitoring of Wind Turbine
    Garg, Himani
    Dahiya, Ratna
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2015, 5 (02): : 591 - 597