Integrating machine learning for sustaining cybersecurity in digital banks

被引:2
|
作者
Asmar, Muath [1 ]
Tuqan, Alia [2 ]
机构
[1] Najah Natl Univ, Fac Business & Commun, Dept Finance, Nablus, Palestine
[2] Najah Natl Univ, Fac Grad Studies, Master Business Adm, Nablus, Palestine
关键词
Cybersecurity; Digital banking; Machine learning; Fraud detection; Security measures; Phishing attacks; ANOMALY DETECTION; NEURAL-NETWORK; SECURITY; MALWARE; THREATS; SYSTEM; CHALLENGES; REPUTATION; MODEL;
D O I
10.1016/j.heliyon.2024.e37571
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cybersecurity continues to be an important concern for financial institutions given the technology's rapid development and increasing adoption of digital services. Effective safety measures must be adopted to safeguard sensitive financial data and protect clients from potential harm due to the rise in cyber threats that target digital organizations. The aim of this study is to investigates how machine learning algorithms are integrated into cyber security measures in the context of digital banking and its benefits and drawbacks. We initially provide a general overview of digital banks and the particular security concerns that differentiate them from conventional banks. Then, we explore the value of machine learning in strengthening cybersecurity defenses. We revealed that insider threats, distributed denial of service (DDoS) assaults, ransomware, phishing attacks, and social engineering are main cyberthreats that are digital banks exposed. We identify the appropriate machine learning algorithms such as support vector machines (SVM), recurrent neural networks (RNN), hidden markov models (HMM), and local outlier factor (LOF) that are used for detection and prevention cyberthreats. In addition, we provide a model that considers ethical concerns while constructing a cybersecurity framework to address potential vulnerabilities in digital banking systems. The advantages and disadvantages of incorporating machine learning into the cybersecurity strategy of digital banks are outlined using strengths, weaknesses, opportunities, threats (SWOT) analysis. This study seeks to provide a thorough knowledge of how machine learning may strengthen cybersecurity procedures, protect digital banks, and maintain customer trust in the ecosystem of digital banking.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Data Analytics for Cybersecurity Based on Machine Learning Algorithms
    Wang, Lidong
    Mosher, Reed L.
    Duett, Patti
    Falls, Terril C.
    SOUTHEASTCON 2023, 2023, : 810 - 814
  • [32] Enhancing Cybersecurity Through Fast Machine Learning Algorithms
    Li, Zhida
    Han, Wencheng
    Shao, Yunlong
    Makanju, Tokunbo
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 905 - 909
  • [33] A Syllabus on Data Mining and Machine Learning with Applications to Cybersecurity
    Epishkina, Anna
    Zapechnikov, Sergey
    2016 THIRD INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION PROCESSING, DATA MINING, AND WIRELESS COMMUNICATIONS (DIPDMWC), 2016, : 194 - 199
  • [34] Cybersecurity and Risk Prediction Based on Machine Learning Algorithms
    Yang, Haoliang
    Zhu, Jianan
    Li, Jiaqing
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [35] AN EXTENSIVE REVIEW ON IMPACT OF MACHINE LEARNING APPLICATIONS IN CYBERSECURITY
    Rao, N. Thirupathi
    Reddy, B. Dinesh
    Bhattacharyya, Debnath
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2020, 14 (02): : 19 - 26
  • [36] Machine learning and blockchain technologies for cybersecurity in connected vehicles
    Ahmad, Jameel
    Zia, Muhammad Umer
    Naqvi, Ijaz Haider
    Chattha, Jawwad Nasar
    Butt, Faran Awais
    Huang, Tao
    Xiang, Wei
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 14 (01)
  • [37] Use of Machine Learning in Interactive Cybersecurity and Network Education
    Loftus, Neil
    Narman, Husnu S.
    SENSORS, 2023, 23 (06)
  • [38] A Systematic Review of Defensive and Offensive Cybersecurity with Machine Learning
    Aiyanyo, Imatitikua D.
    Samuel, Hamman
    Lim, Heuiseok
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [39] Cybersecurity Resilience in SMEs. A Machine Learning Approach
    de Arroyabe, Juan Carlos Fernandez
    Arroyabe, Marta F.
    Fernandez, Ignacio
    Arranz, Carlos F. A.
    JOURNAL OF COMPUTER INFORMATION SYSTEMS, 2024, 64 (06) : 711 - 727
  • [40] Machine learning for automatic assignment of the severity of cybersecurity events
    DeCastro-Garcia, Noemi
    Munoz Castaneda, Angel L.
    Fernandez-Rodriguez, Mario
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2020, 2 (01)