Low-velocity impact resistance of the Z-pin reinforced carbon fiber composite laminates

被引:0
|
作者
Wu, Wenyun [1 ]
Guo, Zhangxin [1 ]
Shi, Haolin [1 ]
Niu, Weijing [2 ]
Chai, Gin Boay [3 ]
Li, Yongcun [1 ,4 ,5 ]
机构
[1] Taiyuan Univ Technol, Coll Aeronaut & Astronaut, Taiyuan 030024, Peoples R China
[2] Shanxi Polytech Coll, Dept Mechatron Engn, Taiyuan 030006, Peoples R China
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Nanyang, Singapore
[4] Taiyuan Univ Technol, Shanxi Key Lab Mat Strength & Struct Impact, Taiyuan, Peoples R China
[5] Taiyuan Univ Technol, Natl Demonstrat Ctr Expt Mech Educ, Taiyuan 030024, Peoples R China
关键词
composite laminates; finite element simulation; low-velocity impact; mechanical behavior; Z-pin; DELAMINATION RESISTANCE; PREDICTION;
D O I
10.1002/pc.29066
中图分类号
TB33 [复合材料];
学科分类号
摘要
A voronoi user material subroutine (VUMAT) was developed using the three-dimensional Hashin damage criterion and exponential nonlinear damage evolution method. An interlayer damage model based on the quadratic nominal stress (QUADS) criterion and B-K fracture criterion was introduced, and a finite element model of Z-pin reinforced composite laminates under low-velocity impact was established. The low-velocity impact behavior of Z-pin reinforced composite laminates with different impact velocities (0.6 m/s, 0.4 m/s, and 0.3 m/s), different layup forms ([0 degrees/90 degrees](4) and [0 degrees/45 degrees/90 degrees/-45 degrees](2)), and different Z-pin spacing (4 mm, 8 mm, and 16 mm) was studied using ABAQUS. The results indicate that different layup forms have little effect on the low-velocity impact behavior of Z-pin reinforced composite laminates. The Z-pin spacing has a significant influence on the low-velocity impact behavior of Z-pin reinforced composite laminates. When the impact velocity is 0.4 m/s, the specific energy absorption of composite laminates with Z-pin spacing of 16 mm is 85.93% and 87.7% lower than that of composite laminates with Z-pin spacing of 4 mm and 8 mm. As the Z-pin spacing decreases (Z-pin density increases), the impact resistance of Z-pin reinforced composite laminates first increases and then decreases.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An efficient numerical method to analyze low-velocity impact response of carbon fiber reinforced thermoplastic laminates
    Zhang, Yiben
    Sun, Lingyu
    Li, Lijun
    Xiao, Haiyan
    Wang, Yantao
    POLYMER COMPOSITES, 2020, 41 (07) : 2673 - 2686
  • [32] Impact resistance performances of resin matrix composite single lap joints reinforced by Z-pin
    Xu A.
    Li Y.
    Huan D.
    Chu Q.
    Zhou X.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2018, 33 (03): : 671 - 682
  • [33] Electrical and thermal behaviour of Z-pin reinforced carbon-fibre composite laminates under fault currents
    Chen, Mudan
    Zhang, Zhaobo
    Zhang, Bing
    Allegri, Giuliano
    Yuan, Xibo
    Hallett, Stephen R.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 248
  • [34] Low-velocity Impact Performance of Glass Fiber, Kenaf Fiber, and Hybrid Glass/Kenaf Fiber Reinforced Epoxy Composite Laminates
    Majid, Dayang Laila
    Jamal, Qistina Mohd
    Manan, Nor Hafizah
    BIORESOURCES, 2018, 13 (04): : 8839 - 8852
  • [35] Bridging Effect and Efficiency of Partly-Cured Z-pin Reinforced Composite Laminates
    Chu, Qiyi
    Li, Yong
    Xiao, Jun
    Huan, Dajun
    Zhang, Xiangyang
    Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34 (02) : 177 - 187
  • [36] Bridging Effect and Efficiency of Partly-Cured Z-pin Reinforced Composite Laminates
    Chu Qiyi
    Li Yong
    Xiao Jun
    Huan Dajun
    Zhang Xiangyang
    Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34 (02) : 177 - 187
  • [37] Experimental and Simulation Study on Failure of Thermoplastic Carbon Fiber Composite Laminates under Low-Velocity Impact
    Yang, Lei
    Huang, Xiaolin
    Liao, Zhenhao
    Wei, Zongyou
    Zou, Jianchao
    POLYMERS, 2024, 16 (18)
  • [38] Low-velocity multiple impact damage characteristics and numerical simulation of carbon fiber/epoxy composite laminates
    Fang, Lin
    Chu, Yuji
    Zhu, Xueli
    Yu, Mingming
    Xie, Wang
    Ren, Musu
    Sun, Jinliang
    POLYMER COMPOSITES, 2024, 45 (03) : 2517 - 2531
  • [39] Damage and Failure of Laminated Carbon-Fiber-Reinforced Composite under Low-Velocity Impact
    Wang, Wenzhi
    Wan, Xiaopeng
    Zhou, Jun
    Zhao, Meiying
    Li, Yulong
    Shang, Shen
    Gao, Xiaosheng
    JOURNAL OF AEROSPACE ENGINEERING, 2014, 27 (02) : 308 - 317
  • [40] Low-Velocity Impact and Residual Compression Performance of Carbon Fiber Reinforced Composite Stiffened Plates
    Cui, Jianan
    Yan, Shi
    Zhao, Yun
    Jiang, Lili
    APPLIED COMPOSITE MATERIALS, 2023, 30 (04) : 1185 - 1206