A novel integrated modeling strategy for predicting damage mechanisms and energy dissipation of composite stiffened structures under low-velocity impact and compression

被引:2
|
作者
Hua, Chunxing [1 ]
Xu, Zhonghai [1 ]
Chen, Dianyu [2 ]
Huang, Mingxuan [1 ]
Cai, Chaocan [1 ]
Qiu, Jiezheng [1 ]
He, Xiaodong [1 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
[2] AVIC Shenyang Aircraft Design & Res Inst, Shenyang 110035, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite stiffened structure; Low-velocity impact; Integrated modeling strategy; Damage mechanism; Energy dissipation; RESIDUAL STRENGTH; LAMINATED COMPOSITES; BEHAVIOR; FAILURE; CFRP; PANELS; EVOLUTION;
D O I
10.1016/j.ast.2024.109454
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Aiming at the limitations of mechanical behavior analysis method of composite structures in multi-model prediction, a novel integrated finite element model containing low-velocity impact (LVI) and compression after impact (CAI) is established, which can effectively simulate the failure mechanism and energy dissipation characteristics of composite stiffened structures under complex working conditions. Firstly, strain-based 3D-Hashin criterion, continuum damage mechanics model and cohesive zone model are used to predict the intra- and inter-laminar damage of composite stiffened structures and are implemented in Abaqus/explicit solver in combined with VUMAT subroutine. Moreover, the reliability of the proposed modeling strategy is verified via various test methods such as the LVI test platform, universal testing machine and digital image correlation technique. Finally, the effects of different impact energies on the mechanical response, failure mechanism, energy dissipation and residual bearing performance of composite stiffened structures with flange edge impact are further revealed. The results show that the deltoid and 0 degrees degrees layups dissipate more energy and accommodate the larger load. Matrix tensile damage and interface debonding are considered to be the main damage modes in composite stiffened structures. The novel integrated modeling strategy not only improves the inefficient transfer of damage information between multiple models but also avoids the shortcomings of the large bias in the prediction results of the equivalent analysis method. This research provides a reference for the application of composite stiffened structures for aerospace in multiple working conditions.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Impact resistance and damage mechanisms of CFRP with elastomeric interlayers under low-velocity impacts
    Li, Zhongyu
    Ma, Zhe
    Wang, Chun
    Gu, Yu
    Cong, Songxia
    Wang, Jianfeng
    Wang, Bing
    POLYMER COMPOSITES, 2025,
  • [42] Damage degradation modelling for transverse cracking in composite laminates under low-velocity impact
    Ibrahim, Ghalib R.
    Albarbar, A.
    Brethee, Khaldoon F.
    ENGINEERING FRACTURE MECHANICS, 2022, 263
  • [43] Experimental and Numerical Study of Composite Honeycomb Sandwich Structures Under Low-Velocity Impact
    Deng, Yunfei
    Hu, Xiaoyu
    Niu, Yijie
    Zheng, Yimei
    Wei, Gang
    APPLIED COMPOSITE MATERIALS, 2024, 31 (02) : 535 - 559
  • [44] Experimental and Numerical Study of Composite Honeycomb Sandwich Structures Under Low-Velocity Impact
    Yunfei Deng
    Xiaoyu Hu
    Yijie Niu
    Yimei Zheng
    Gang Wei
    Applied Composite Materials, 2024, 31 : 535 - 559
  • [45] An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates
    Tuo, Hongliang
    Lu, Zhixian
    Ma, Xiaoping
    Zhang, Chao
    Chen, Shuwen
    COMPOSITES PART B-ENGINEERING, 2019, 167 : 329 - 341
  • [46] Parametric Study on Low-Velocity Impact (LVI) Damage and Compression after Impact (CAI) Strength of Composite Laminates
    Guo, Shuangxi
    Li, Xueqin
    Liu, Tianwei
    Bu, Guangyu
    Bai, Jiangbo
    POLYMERS, 2022, 14 (23)
  • [47] A model of low-velocity impact damage of composite plates subjected to Compression-After-Impact (CAI) testing
    Rozylo, P.
    Debski, H.
    Kubiak, T.
    COMPOSITE STRUCTURES, 2017, 181 : 158 - 170
  • [48] Experimental study on composite stiffened panel with low velocity impact damage under compressive load
    An, T.
    He, Y.
    Shao, Q.
    Wang, J.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : 861 - 864
  • [49] A smart multifunctional polymer nanocomposites layer for the estimation of low-velocity impact damage in composite structures
    Capezzuto, F.
    Ciampa, F.
    Carotenuto, G.
    Meo, M.
    Milella, Eva
    Nicolais, F.
    COMPOSITE STRUCTURES, 2010, 92 (08) : 1913 - 1919
  • [50] Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact
    Huang, Linhai
    Tao, Yin
    Sun, Jin
    Zhang, Diantang
    Zhao, Junhua
    THIN-WALLED STRUCTURES, 2023, 191