Sorting signed permutations by tandem duplication random loss and inverse tandem duplication random loss

被引:0
|
作者
Schmidt, Bruno J. [2 ,3 ]
Hartmann, Tom [1 ]
Stadler, Peter F. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Leipzig, Dept Comp Sci & Interdisciplinary, Bioinformat Grp, Ctr Bioinformat, D-04107 Leipzig, Germany
[2] Ctr Scalable Data Analyt & Artificial Intelligence, Dresden Leipzig, Germany
[3] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[4] Univ Vienna, Inst Theoret Chem, Wahringerstr 17, A-1090 Vienna, Austria
[5] Univ Nacl Colombia, Fac Ciencias, Bogota, Colombia
[6] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
关键词
Permutation sorting problem; Efficient algorithms; Genome rearrangements; MITOCHONDRIAL GENE ORDER; GENOME REARRANGEMENT; EVOLUTION; COMBINATORICS;
D O I
10.1016/j.aam.2024.102757
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tandem duplication random loss (TDRL) and inverse tandem duplication random loss (iTDRL) are mechanisms of mitochondrial genome rearrangement that can be modeled as simple operations on signed permutations. Informally, they comprise the duplication of a subsequence of a permutation, where in the case of iTDRL the copy is inserted with inverted order and signs. In the second step, one copy of each duplicate element is removed, such that the result is again a signed permutation. The TDRL/iTDRL sorting problem consists in finding the minimal number of TDRL or iTDRL operations necessary to convert the identity permutation iota into a given permutation pi. We introduce a simple signature, called the misc-encoding, of permutation pi. This construction is used to design an O(n ( n log n ) algorithm to solve the TDRL/iTDRL sorting problem. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Posets and permutations in the duplication-loss model: Minimal permutations with d descents
    Bouvel, Mathilde
    Pergola, Elisa
    [J]. THEORETICAL COMPUTER SCIENCE, 2010, 411 (26-28) : 2487 - 2501
  • [22] On counting tandem duplication trees
    Yang, YL
    Zhang, LX
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (06) : 1160 - 1163
  • [23] The combinatorics of tandem duplication trees
    Gascuel, O
    Hendy, MD
    Jean-Marie, A
    McLachlan, R
    [J]. SYSTEMATIC BIOLOGY, 2003, 52 (01) : 110 - 118
  • [24] Sequence alignment with tandem duplication
    Benson, G
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 1997, 4 (03) : 351 - 367
  • [25] SYNAPTONEMAL COMPLEX AND A TANDEM DUPLICATION IN MOUSE
    MOSES, MJ
    POORMAN, PA
    RUSSELL, LB
    CACHEIRO, NL
    SOLARI, AJ
    [J]. JOURNAL OF CELL BIOLOGY, 1977, 75 (02): : A135 - A135
  • [26] Selection for gene clustering by tandem duplication
    Reams, AB
    Neidle, EL
    [J]. ANNUAL REVIEW OF MICROBIOLOGY, 2004, 58 : 119 - 142
  • [27] Construction of tandem duplication correcting codes
    Zeraatpisheh, Mohamadbagher
    Esmaeili, Morteza
    Gulliver, T. Aaron
    [J]. IET COMMUNICATIONS, 2019, 13 (15) : 2217 - 2225
  • [28] A SPONTANEOUS TANDEM DUPLICATION IN A DROSOPHILA CHROMOSOME
    BAIMAI, V
    KITTHAWEE, S
    [J]. EXPERIENTIA, 1981, 37 (04): : 345 - 346
  • [29] STRUCTURE OF RR TANDEM DUPLICATION IN MAIZE
    DOONER, HK
    KERMICLE, JL
    [J]. GENETICS, 1971, 67 (03) : 427 - +
  • [30] Capacity and Expressiveness of Genomic Tandem Duplication
    Jain, Siddharth
    Farnoud , Farzad
    Bruck, Jehoshua
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6129 - 6138