Transforming Quantified Boolean Formulas Using Biclique Covers

被引:0
|
作者
Kullmann, Oliver [1 ]
Shukla, Ankit [2 ]
机构
[1] Swansea Univ, Swansea, W Glam, Wales
[2] Johannes Kepler Univ Linz, Linz, Austria
基金
英国工程与自然科学研究理事会;
关键词
QBF solving; DQBF; 2QCNF; biclique cover problem; conflict graph; preprocessing; Horn clause-sets; minimal unsatisfiability; MINIMAL UNSATISFIABILITY;
D O I
10.1007/978-3-031-30820-8_23
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce the global conflict graph of DQCNFs (dependency quantified conjunctive normal forms), recording clashes between clauses on such universal variables on which all existential variables depend (called "global variables"). The biclique covers of this graph correspond to the eligible clause-slices of the DQCNF which consider only the global variables. We show that all such slices yield satisfiability-equivalent variations. This opens the possibility to realise this slice using as few global variables as possible. We give basic theoretical results and first supporting experimental data.
引用
收藏
页码:372 / 390
页数:19
相关论文
共 50 条
  • [31] QuBIS: An (In)complete Solver for Quantified Boolean Formulas
    Pulina, Luca
    Tacchella, Armando
    MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 34 - 43
  • [32] Quantifier Shifting for Quantified Boolean Formulas Revisited
    Heisinger, Simone
    Heisinger, Maximilian
    Rebola-Pardo, Adrian
    Seidl, Martina
    AUTOMATED REASONING, IJCAR 2024, PT I, 2024, 14739 : 325 - 343
  • [33] A Model for Generating Random Quantified Boolean Formulas
    Chen, Hubie
    Interian, Yannet
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 66 - 71
  • [34] A dichotomy theorem for learning quantified boolean formulas
    Dalmau, V
    MACHINE LEARNING, 1999, 35 (03) : 207 - 224
  • [35] Propositional PSPACE reasoning with boolean programs versus quantified Boolean formulas
    Skelley, A
    AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 1163 - 1175
  • [36] A symbolic search based approach for quantified Boolean formulas
    Audemard, G
    Saïs, L
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, PROCEEDINGS, 2005, 3569 : 16 - 30
  • [37] Expressing default abduction problems as quantified Boolean formulas
    Tompits, H
    AI COMMUNICATIONS, 2003, 16 (02) : 89 - 105
  • [38] A multi-engine solver for quantified Boolean formulas
    Pulina, Luca
    Tacchella, Armando
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2007, 2007, 4741 : 574 - 589
  • [39] Biclique Covers and Partitions
    Pinto, Trevor
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [40] Variable independence and resolution paths for quantified boolean formulas
    Van Gelder, Allen
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, 6876 LNCS : 789 - 803