Random self-similar series over a rotation

被引:0
|
作者
Bremont, Julien [1 ,2 ]
机构
[1] Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France
[2] Univ Gustave Eiffel, LAMA, F-77447 Marne La Vallee, France
关键词
Self-similar measure; Rajchman measure; irrational rotation on the torus;
D O I
10.1142/S0219493724500333
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the law of random self-similar series defined above an irrational rotation on the Circle. This provides a natural class of continuous singular non-Rajchman measures.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Variable step random walks and self-similar distributions
    Gunaratne, GH
    McCauley, JL
    Nicol, M
    Török, A
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (5-6) : 887 - 899
  • [42] Stochastic self-similar processes and random walk in nature
    Iovane, G.
    Chinnici, M.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2006, 9 (03) : 475 - 498
  • [43] Variable Step Random Walks and Self-Similar Distributions
    Gemunu H. Gunaratne
    Joseph L. McCauley
    Matthew Nicol
    Andrei Török
    Journal of Statistical Physics, 2005, 121 : 887 - 899
  • [44] Clustering of heavy particles in random self-similar flow
    Bec, J.
    Cencini, M.
    Hillerbrand, R.
    PHYSICAL REVIEW E, 2007, 75 (02):
  • [45] LOCALIZATION IN RANDOM SELF-SIMILAR STRUCTURES - UNIVERSAL BEHAVIOR
    DRAGER, J
    RUSS, S
    BUNDE, A
    EUROPHYSICS LETTERS, 1995, 31 (08): : 425 - 430
  • [46] On a random walk model on sets with self-similar structure
    Arkashov, N. S.
    Seleznev, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (06) : 968 - 983
  • [47] THE REGULARITY OF RANDOM GRAPH DIRECTED SELF-SIMILAR SETS
    张晓群
    刘妍岩
    Acta Mathematica Scientia, 2004, (03) : 485 - 492
  • [48] On a random walk model on sets with self-similar structure
    N. S. Arkashov
    V. A. Seleznev
    Siberian Mathematical Journal, 2013, 54 : 968 - 983
  • [49] Drift in a random walk along self-similar clusters
    V. E. Arkhincheev
    Journal of Experimental and Theoretical Physics, 1999, 88 : 561 - 564
  • [50] ON INFINITELY DIVISIBLE SELF-SIMILAR RANDOM-FIELDS
    SURGAILIS, D
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 58 (04): : 453 - 477