4E analysis and multi-objective optimization of a novel multi-generating cycle based on waste heat recovery from solid oxide fuel cell fed by biomass

被引:2
|
作者
Mishamandani, Arian Shabruhi [1 ]
Nejad, Amir Qatarani [1 ]
Shabani, Najmeh [2 ]
Ahmadi, Gholamreza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Mech & Energy Engn, Tehran, Iran
[2] Univ Guilan, Text Dept, Rasht, Iran
关键词
Solid oxide fuel cell; Supercritical CO 2; Transcritical CO 2; Organic Rankine cycle; Reverse osmosis; Thermoelectric generator; ORGANIC RANKINE-CYCLE; HYDROGEN-PRODUCTION; ENERGY-PRODUCTION; POWER-GENERATION; EXERGOENVIRONMENTAL ANALYSES; MULTIGENERATION SYSTEM; THERMODYNAMIC ANALYSIS; DESALINATION SYSTEM; EXERGY ANALYSIS; BRAYTON CYCLE;
D O I
10.1016/j.ref.2024.100610
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study optimizes a novel developed cycle including solid oxide fuel cell (SOFC) fed by synthesis gas produced from biomass as well as gas turbine (GT), supercritical carbon dioxide cycle (SCO2), transcritical carbon dioxide cycle (TCO2), Organic Rankine Cycle (ORC), thermoelectric generator (TEG), and reverse osmosis (RO)- based desalination. Energy, exergy, exergoeconomic and exergoenvironmental analyses on the developed cycle were investigated. Multi-objective optimization was carried out using of Genetic algorithm using generated power and exergy destruction as objective functions. Sankey diagram data indicate that afterburner holds the highest portion of the total exergy destruction 46.5% (692.24 kW), followed by SOFC which is 20.48% (304.51 kW). Moreover, optimization results showed that the total net power, first and second laws of thermodynamic efficiencies increased by 2.6%, 0.96% and 0.83%, respectively, while exergy destruction decreased by 1%. Furthermore, such a power increase (18.53 kW) using the freshwater produced by RO leads to daily production of 17040 liters of drinking water. According to the exergoeconomic analysis, the minimum flow value pertains to GT at a value of 0.0119 $/GJ, while the TCO2 turbine has the highest value which is 0.2867 $/GJ. The system product cost rate and exergy destruction cost rate reached 27.0353 $/h, and 10.7012 $/h, respectively. In the case of the exergoenvironmental one, the maximum environmental impact is related to the SCO2 turbine 0.0212 Pts/GJ, while SOFC has the lowest (0.0002 Pts/GJ). The system product environmental impact and exergy destruction were achieved at optimum values of 2.7503 $/h, and 4.1576 x10- 7 $/h, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multi-objective optimization of a clean combined system based gasifier-solid oxide fuel cell
    Zhou, Zongming
    Dhahad, Hayder A.
    Almohana, Abdulaziz Ibrahim
    Almojil, Sattam Fahad
    Alali, Abdulrhman Fahmi
    Anqi, Ali E.
    Rajhi, Ali A.
    Alamri, Sagr
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (43) : 18648 - 18662
  • [22] Performance Analysis and Multi-Objective Optimization of an Irreversible Solid Oxide Fuel Cell-Stirling Heat Engine Hybrid System
    Chen, Liwei
    Gao, Songhua
    Zhang, Houcheng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (08): : 10772 - 10787
  • [23] Performance analysis and multi-objective optimization of a novel solid oxide fuel cell-based poly-generation and condensation dehumidification system
    Huang, Zihao
    Xiao, Yan
    You, Huailiang
    Chen, Daifen
    Hu, Bin
    Li, Guoxiang
    Han, Jitian
    Lysyakov, Anatoly
    ENERGY CONVERSION AND MANAGEMENT, 2024, 319
  • [24] RETRACTION: Efficient waste heat recovery of a hybrid solar-biogas-fueled gas turbine cycle for poly-generation purpose: 4E analysis, parametric study, and multi-objective optimization
    Zhou, Jincheng
    Zoghi, Mohammad
    Abed, Hooman
    FUEL, 2025, 391
  • [25] Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine
    Yang, Fubin
    Zhang, Hongguang
    Song, Songsong
    Bei, Chen
    Wang, Hongjin
    Wang, Enhua
    ENERGY, 2015, 93 : 2208 - 2228
  • [26] Multi-objective optimization of a solid oxide fuel cell-based integrated system to select the optimal closed thermodynamic cycle and heat coupling scheme simultaneously
    Xu, Yanyan
    Lei, Yuanting
    Xu, Changzhe
    Chen, Yuting
    Tan, Qiang
    Ye, Shuang
    Li, Jixiang
    Huang, Weiguang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (62) : 31828 - 31853
  • [27] Performance analysis and multi-objective optimization of organic Rankine cycle for low-grade sinter waste heat recovery
    Feng, Junsheng
    Cheng, Xinni
    Wang, Huanhuan
    Zhao, Liang
    Wang, Haitao
    Dong, Hui
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 53
  • [28] Enhanced reaction extraction distillation via multi-objective optimization and 4E analysis for sustainable recovery of organic compounds from wastewater
    Wang, Yumeng
    Zhu, Wenguang
    Cheng, Haiyang
    Zhong, Jianhui
    Li, Xin
    Qi, Jianguang
    Wang, Shuai
    Zhu, Zhaoyou
    Wang, Yinglong
    Cui, Peizhe
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 186 : 884 - 894
  • [29] Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents
    Habibollahzade, Ali
    Gholamian, Ehsan
    Behzadi, Amirmohammad
    APPLIED ENERGY, 2019, 233 : 985 - 1002
  • [30] Integration of direct ammonia protonic ceramic fuel cell with thermoacoustic cycle for waste heat recovery: Performance assessment, influential mechanism and multi-objective optimization
    Han, Yuan
    Gao, Wenzhi
    Qin, Yanzhou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 118 : 356 - 372