Some Classes of Bazilevič-Type Close-to-Convex Functions Involving a New Derivative Operator

被引:0
|
作者
Sabir, Pishtiwan Othman [1 ]
Lupas, Alina Alb [2 ]
Khalil, Sipal Saeed [3 ]
Mohammed, Pshtiwan Othman [4 ,5 ]
Abdelwahed, Mohamed [6 ]
机构
[1] Univ Sulaimani, Coll Sci, Dept Math, Sulaymaniyah 46001, Iraq
[2] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
[3] Univ Zakho, Coll Educ, Dept Math, Zakho 42002, Iraq
[4] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah 46001, Iraq
[5] Univ Sulaimani, Res & Dev Ctr, Sulaymaniyah 46001, Iraq
[6] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 07期
关键词
analytic functions; univalent functions; starlike functions; Bazilevi & ccaron; functions; close-to-convex functions; Fekete-Szeg & ouml; inequalities; COEFFICIENT;
D O I
10.3390/sym16070836
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, we are merging two interesting and well-known classes, namely those of Bazilevi & ccaron; and close-to-convex functions associated with a new derivative operator. We derive coefficient estimates for this broad category of analytic, univalent and bi-univalent functions and draw attention to the Fekete-Szeg & ouml; inequalities relevant to functions defined within the open unit disk. Additionally, we identify several specific special cases of our results by specializing the parameters.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] SOME TOPOLOGICAL THEOREMS RELATING TO CLOSE-TO-CONVEX FUNCTIONS
    QUINE, JR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A105 - A105
  • [32] SOME INVARIANCE PROPERTIES OF A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    GOEL, RM
    MEHROK, BS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (10): : 1240 - 1249
  • [33] Some properties of certain meromorphic close-to-convex functions
    Wang, Zhi-Gang
    Sun, Yong
    Xu, Neng
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 454 - 460
  • [34] WEAKLY CLOSE-TO-CONVEX FUNCTIONS
    LIVINGSTON, AE
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1988, 18 (04) : 719 - 732
  • [35] CLOSE-TO-CONVEX SCHLICHT FUNCTIONS
    KAPLAN, W
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04) : 351 - 351
  • [36] On a subclass of close-to-convex functions
    Dash, Prachi Prajna
    Prajapat, Jugal Kishore
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (08)
  • [37] ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    MOGRA, ML
    AHUJA, OP
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (08): : 849 - 862
  • [38] ON A SET OF CLOSE-TO-CONVEX FUNCTIONS
    Sharma, Poonam
    Raina, Ravinder Krishna
    Sokol, Janusz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2018, 55 (02) : 190 - 202
  • [39] Doubly close-to-convex functions
    Dorff, M
    Naraniecka, I
    Szynal, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (01) : 55 - 62
  • [40] ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Wang, Zhi-Gang
    Chen, Da-Zhao
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (02): : 95 - 101