Pareto Distribution of the Forbes Billionaires

被引:0
|
作者
Pinsky, Eugene [1 ]
Zhang, Weiqi [1 ]
Wang, Zibo [1 ]
机构
[1] Metropolitan Coll, Dept Comp Sci, 1010 Commonwealth Ave, Boston, MA 02215 USA
关键词
Forbes dataset; 80-20; rule; Predictive models; Statistical distribution analysis;
D O I
10.1007/s10614-024-10730-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
The Pareto distribution is commonly used to represent situations where a small portion of the population controls a disproportionately large share of resources, such as income or wealth distribution. Our study analyzed the Forbes Billionaire List from 2001 to 2023 by fitting it to a Pareto distribution using the Maximum Likelihood Estimation (MLE). Our results showed that the distribution parameter alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} consistently ranged from 1.0 to 1.5. When the distribution parameter alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} is less than 2, the underlying Pareto distribution has infinite variance, complicating the comparisons of deviations. To address this, we used Mean Absolute Deviation MAD (about median) as an alternative approach to estimate alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}. Using MAD resulted in a three times lower root-mean-square error than using MLE. We considered MAD-based kurtosis and skewness by analogy with quantile statistics. We derived new interpretations for these measures in terms of areas of appropriately folded cumulative distribution functions. We applied this innovative approach to the Forbes Billionaire dataset, focusing on various segments, including continents, gender, and industries. We examined historical trends and considered future predictions. Our findings suggest that MAD is more effective for analyzing datasets that follow Pareto distributions.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] A MODEL FOR THE PARETO DISTRIBUTION
    WALTER, W
    APPLICABLE ANALYSIS, 1981, 11 (03) : 233 - 239
  • [22] An Extended Pareto Distribution
    Mead, M. E.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2014, 10 (03) : 313 - 329
  • [23] The Pareto Distribution of Incomes
    Rhodes, E. C.
    ECONOMICA-NEW SERIES, 1944, 11 (41): : 1 - 11
  • [24] The Kumaraswamy Pareto distribution
    Bourguignon, Marcelo
    Silva, Rodrigo B.
    Zea, Luz M.
    Cordeiro, Gauss M.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2013, 12 (02): : 129 - 144
  • [25] Billionaires
    Kroll, Luisa
    Miller, Matthew
    FORBES, 2010, 185 (05): : 69 - +
  • [26] A multivariate pareto distribution
    Hanagal, DD
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (07) : 1471 - 1488
  • [27] On a multivariate Pareto distribution
    Asimit, Alexandru V.
    Furman, Edward
    Vernic, Raluca
    INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (02): : 308 - 316
  • [28] A product Pareto distribution
    Saralees Nadarajah
    Arjun K. Gupta
    Metrika, 2008, 68 : 199 - 208
  • [29] The Pareto optimality distribution
    Nadarajah, Saralees
    QUALITY & QUANTITY, 2009, 43 (06) : 993 - 998
  • [30] FORMULATION OF THE PARETO DISTRIBUTION
    SAHAL, D
    ENVIRONMENT AND PLANNING A, 1978, 10 (12) : 1363 - 1376