Pareto Distribution of the Forbes Billionaires

被引:0
|
作者
Pinsky, Eugene [1 ]
Zhang, Weiqi [1 ]
Wang, Zibo [1 ]
机构
[1] Metropolitan Coll, Dept Comp Sci, 1010 Commonwealth Ave, Boston, MA 02215 USA
关键词
Forbes dataset; 80-20; rule; Predictive models; Statistical distribution analysis;
D O I
10.1007/s10614-024-10730-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
The Pareto distribution is commonly used to represent situations where a small portion of the population controls a disproportionately large share of resources, such as income or wealth distribution. Our study analyzed the Forbes Billionaire List from 2001 to 2023 by fitting it to a Pareto distribution using the Maximum Likelihood Estimation (MLE). Our results showed that the distribution parameter alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} consistently ranged from 1.0 to 1.5. When the distribution parameter alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} is less than 2, the underlying Pareto distribution has infinite variance, complicating the comparisons of deviations. To address this, we used Mean Absolute Deviation MAD (about median) as an alternative approach to estimate alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}. Using MAD resulted in a three times lower root-mean-square error than using MLE. We considered MAD-based kurtosis and skewness by analogy with quantile statistics. We derived new interpretations for these measures in terms of areas of appropriately folded cumulative distribution functions. We applied this innovative approach to the Forbes Billionaire dataset, focusing on various segments, including continents, gender, and industries. We examined historical trends and considered future predictions. Our findings suggest that MAD is more effective for analyzing datasets that follow Pareto distributions.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] 2009 FORBES Billionaires
    Kroll, Luisa
    Miller, Matthew
    Serafin, Tatiana
    Greenberg, Duncan
    FORBES, 2009, 183 (06): : 75 - +
  • [2] The Forbes 400 and the Pareto wealth distribution
    Klass, OS
    Biham, O
    Levy, M
    Malcai, O
    Solomon, S
    ECONOMICS LETTERS, 2006, 90 (02) : 290 - 295
  • [3] The Forbes 400 - When billionaires become a dime a dozen
    Conlin, M
    FORBES, 1997, 160 (08): : 147 - 234
  • [4] The super-rich in global perspective: a quantitative analysis of the Forbes list of billionaires
    Neumayer, E
    APPLIED ECONOMICS LETTERS, 2004, 11 (13) : 793 - 796
  • [5] Marrying a Billionaire Studying US American billionaires' family biographies using the Forbes World's Billionaires List, 2010-2022
    Wilken, Ria
    REVIEW OF ECONOMICS OF THE HOUSEHOLD, 2025, : 707 - 735
  • [6] Is the wealth of the Forbes 400 lists really Pareto distributed?
    Chan, Stephen
    Chu, Jeffrey
    Nadarajah, Saralees
    ECONOMICS LETTERS, 2017, 152 : 9 - 14
  • [7] The Forbes 400, the Pareto power-law and efficient markets
    O. S. Klass
    O. Biham
    M. Levy
    O. Malcai
    S. Solomon
    The European Physical Journal B, 2007, 55 : 143 - 147
  • [8] The Forbes 400, the Pareto power-law and efficient markets
    Klass, O. S.
    Biham, O.
    Levy, M.
    Malcai, O.
    Solomon, S.
    EUROPEAN PHYSICAL JOURNAL B, 2007, 55 (02): : 143 - 147
  • [9] PARETO DISTRIBUTION
    RAGHAVAC.M
    METRIKA, 1972, 19 (01) : 76 - 76
  • [10] On the mixtures of Weibull and Pareto (IV) distribution: An alternative to Pareto distribution
    Ghosh, I.
    Hamedani, G. G.
    Bansal, N.
    Maadooliat, M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (09) : 2073 - 2084