GoFish: a foray into open-source, aquatic behavioral automation

被引:0
|
作者
Ajuwon, Victor [1 ]
Cruz, Bruno [2 ,6 ]
Monteiro, Tiago [3 ,4 ,5 ]
机构
[1] Univ Cambridge, Dept Psychol, Cambridge, Cambridgeshire, England
[2] NeuroGears Ltd, London, England
[3] Univ Vet Med Vienna, Konrad Lorenz Inst Ethol, Dept Interdisciplinary Life Sci, Domesticat Lab, Vienna, Austria
[4] Univ Aveiro, William James Ctr Res, Aveiro, Portugal
[5] Univ Aveiro, Dept Educ & Psychol, Aveiro, Portugal
[6] Allen Inst Neural Dynam, Seattle, WA USA
基金
英国生物技术与生命科学研究理事会;
关键词
automatic feeder; behavioral automation; bonsai; fish behavior; fish cognition; GoFish; operant conditioning;
D O I
10.1111/jfb.15937
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
As the most species-rich vertebrate group, fish provide an array of opportunities to investigate the link between ecological interactions and the evolution of behavior and cognition, yet, as an animal model, they are relatively underutilized in studies of comparative cognition. To address this gap, we developed a fully automated platform for behavioral experiments in aquatic species, GoFish. GoFish includes closed-loop control of task contingencies using real-time video tracking, presentation of visual stimuli, automatic food reward dispensers, and built-in data acquisition. The hardware is relatively inexpensive and accessible, and all software components of the platform are open-source. GoFish facilitates experimental automation, allowing for customization of high-throughput protocols and the efficient acquisition of rich behavioral data. We hope this platform proves to be a useful tool for the research community, facilitating refined, reproducible behavioral experiments on aquatic species in comparative cognition, behavioral ecology, and neuroscience.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Enabling high-throughput biology with flexible open-source automation
    Chory, Emma J.
    Gretton, Dana W.
    DeBenedictis, Erika A.
    Esvelt, Kevin M.
    MOLECULAR SYSTEMS BIOLOGY, 2021, 17 (03)
  • [22] Advanced Smartphone-Based Sensing with Open-Source Task Automation
    Ueberham, Maximilian
    Schmidt, Florian
    Schlink, Uwe
    SENSORS, 2018, 18 (08)
  • [23] A tutorial on open-source large language models for behavioral science
    Hussain, Zak
    Binz, Marcel
    Mata, Rui
    Wulff, Dirk U.
    BEHAVIOR RESEARCH METHODS, 2024, : 8214 - 8237
  • [24] PiE: an open-source pipeline for home cage behavioral analysis
    Benedict, Jessie
    Cudmore, Robert H.
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [25] Open-source computational framework for studying Drosophila behavioral phase
    Kostadinov, Boyan
    Pettibone, Hannah Lee
    Bell, Evardra Valerie
    Zhou, Xiaona
    Pranevicius, Ausra
    Shafer, Orie Thomas
    Fernandez, Maria Paz
    STAR PROTOCOLS, 2021, 2 (01):
  • [26] An open-source toolbox for automated phenotyping of mice in behavioral tasks
    Patel, Tapan P.
    Gullotti, David M.
    Hernandez, Pepe
    O'Brien, W. Timothy
    Capehart, Bruce P.
    Morrison, Barclay, III
    Bass, Cameron
    Eberwine, James E.
    Abel, Ted
    Meaney, David F.
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2014, 8
  • [27] uvgVenctester: Open-Source Test Automation Framework for Comprehensive Video Encoder Benchmarking
    Sainio, Joose
    Mercat, Alexandre
    Vanne, Jarno
    MMSYS '21: PROCEEDINGS OF THE 2021 MULTIMEDIA SYSTEMS CONFERENCE, 2021, : 255 - 260
  • [28] Android:: Open-source scripting for testing and automation -: Scripts for recording and playing back
    Smith, L
    Laird, C
    DR DOBBS JOURNAL, 2001, 26 (07): : 99 - 102
  • [29] INVITED: ALIGN - Open-Source Analog Layout Automation from the Ground Up
    Kunal, Kishor
    Madhusudan, Meghna
    Sharma, Arvind K.
    Xu, Wenbin
    Burns, Steven M.
    Harjani, Ramesh
    Hu, Jiang
    Kirkpatrick, Desmond A.
    Sapatnekar, Sachin S.
    PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2019,
  • [30] Sella, an Open-Source Automation-Friendly Molecular Saddle Point Optimizer
    Hermes, Eric D.
    Sargsyan, Khachik
    Najm, Habib N.
    Zador, Judit
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (11) : 6974 - 6988