Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems-Methodology for Matching Heat Storage Solutions for Given Applications

被引:2
|
作者
Jurczyk, Michal [1 ]
Spietz, Tomasz [2 ]
Czardybon, Agata [2 ]
Dobras, Szymon [2 ]
Ignasiak, Karina [2 ]
Bartela, Lukasz [1 ]
Uchman, Wojciech [1 ]
Ochmann, Jakub [1 ]
机构
[1] Silesian Tech Univ, Dept Power Engn & Turbomachinery, Grp Energy Storage Technol, Konarskiego 18, PL-44100 Gliwice, Poland
[2] Inst Energy & Fuel Proc Technol, Zamkowa 1, PL-41803 Zabrze, Poland
关键词
thermal energy storage; single-phase materials; phase-change materials; review; PHASE-CHANGE MATERIALS; SOLAR POWER-PLANTS; HIGH-TEMPERATURE; PACKED-BED; PHYSICAL PROPERTIES; MOLTEN-SALTS; THERMODYNAMIC ANALYSIS; TRANSFER FLUIDS; LATENT-HEAT; STABILITY;
D O I
10.3390/en17143544
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article is a broad literature review of materials used and defined as potential for heat storage processes. Both single-phase and phase-change materials were considered. An important part of this paper is the definition of the toxicity of heat storage materials and other factors that disqualify their use depending on the application. Based on the literature analysis, a methodology was developed for selecting the optimal heat storage material depending on the typical parameters of the process and the method of heat transfer and storage. Based on the presented results, a solution was proposed for three temperature ranges: 100 degrees C (low-temperature storage), 300 degrees C (medium-temperature storage) and 500 degrees C (high-temperature storage). For all defined temperature levels, it is possible to adapt solid, liquid or phase-change materials for heat storage. However, it is essential to consider the characteristics of the specific system and to assess the advantages and disadvantages of the accumulation material used. Rock materials are characterised by similar thermophysical parameters and relatively low prices compared with their universality, while liquid energy storage allows for greater flexibility in power generation while maintaining the operational parameters of the heat source.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials
    Lin, Yaxue
    Alva, Guruprasad
    Fang, Guiyin
    ENERGY, 2018, 165 : 685 - 708
  • [32] A review of the application of carbon materials in solar thermal energy storage
    Badenhorst, Heinrich
    SOLAR ENERGY, 2019, 192 : 35 - 68
  • [33] Aquifer Thermal Energy Storage (ATES) smart grids: Large-scale seasonal energy storage as a distributed energy management solution
    Rostampour, Vahab
    Jaxa-Rozen, Marc
    Bloemendal, Martin
    Kwakkel, Jan
    Keviczky, Tomas
    APPLIED ENERGY, 2019, 242 : 624 - 639
  • [34] Enhancing Energy Efficiency in Mediterranean Large-Scale Buildings: A Study on Mobilized Thermal-Energy-Storage Systems
    Lahoud, Chawki
    Harake, Rawad
    Fatfat, Mira
    Bazi, Sarah
    BUILDINGS, 2025, 15 (03)
  • [35] Optimization and spatial pattern of large-scale aquifer thermal energy storage
    Sommer, Wijbrand
    Valstar, Johan
    Leusbrock, Ingo
    Grotenhuis, Tim
    Rijnaarts, Huub
    APPLIED ENERGY, 2015, 137 : 322 - 337
  • [36] Optimization of Large-Scale Battery Energy Storage Applications in Transmission System
    Chen, Aoxia
    Velaga, Yaswanth
    Ausmus, Jason
    Sen, P. K.
    2020 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2020,
  • [37] Module-Based Supercapacitors: Potential Energy Storage Solutions for Large-Scale Photovoltaic Systems
    Zheng, Bowen
    Liu, Chang
    Pan, Mingming
    Gong, Feixiang
    Xu, Xu
    Wang, Xuchen
    Zhao, Liye
    ENERGY TECHNOLOGY, 2024, 12 (12)
  • [38] BASE Benchmark Analysis Software for Energy-efficient Solutions in Large-scale Storage Systems
    Chen, Tseng-Yi
    Wei, Hsin-Wen
    Chen, Ying-Jie
    Hsu, Tsan-Sheng
    Shih, Wei-Kuan
    2013 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2013,
  • [39] Modeling and Application Prospect of Large-scale Energy Storage Power Station
    Li X.
    Xu G.
    Zhao S.
    Li B.
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (06): : 2397 - 2409
  • [40] A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges
    Costa, Sol Carolina
    Kenisarin, Murat
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 154