Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems-Methodology for Matching Heat Storage Solutions for Given Applications

被引:2
|
作者
Jurczyk, Michal [1 ]
Spietz, Tomasz [2 ]
Czardybon, Agata [2 ]
Dobras, Szymon [2 ]
Ignasiak, Karina [2 ]
Bartela, Lukasz [1 ]
Uchman, Wojciech [1 ]
Ochmann, Jakub [1 ]
机构
[1] Silesian Tech Univ, Dept Power Engn & Turbomachinery, Grp Energy Storage Technol, Konarskiego 18, PL-44100 Gliwice, Poland
[2] Inst Energy & Fuel Proc Technol, Zamkowa 1, PL-41803 Zabrze, Poland
关键词
thermal energy storage; single-phase materials; phase-change materials; review; PHASE-CHANGE MATERIALS; SOLAR POWER-PLANTS; HIGH-TEMPERATURE; PACKED-BED; PHYSICAL PROPERTIES; MOLTEN-SALTS; THERMODYNAMIC ANALYSIS; TRANSFER FLUIDS; LATENT-HEAT; STABILITY;
D O I
10.3390/en17143544
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article is a broad literature review of materials used and defined as potential for heat storage processes. Both single-phase and phase-change materials were considered. An important part of this paper is the definition of the toxicity of heat storage materials and other factors that disqualify their use depending on the application. Based on the literature analysis, a methodology was developed for selecting the optimal heat storage material depending on the typical parameters of the process and the method of heat transfer and storage. Based on the presented results, a solution was proposed for three temperature ranges: 100 degrees C (low-temperature storage), 300 degrees C (medium-temperature storage) and 500 degrees C (high-temperature storage). For all defined temperature levels, it is possible to adapt solid, liquid or phase-change materials for heat storage. However, it is essential to consider the characteristics of the specific system and to assess the advantages and disadvantages of the accumulation material used. Rock materials are characterised by similar thermophysical parameters and relatively low prices compared with their universality, while liquid energy storage allows for greater flexibility in power generation while maintaining the operational parameters of the heat source.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] AN INTEGRATED ENERGY SYSTEM WITH LARGE-SCALE ELECTRICAL AND THERMAL ENERGY STORAGE DEVICES
    Zhao, Tian
    Chen, Qun
    PROCEEDINGS OF THE ASME 11TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2017, 2017,
  • [2] Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage
    Gur, Turgut M.
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) : 2696 - 2767
  • [3] Influence of Heat and Mass Transfer on the Performance of Large-Scale Thermal Energy Storage Systems
    Tosatto, Alice
    Ochs, Fabian
    Dahash, Abdulrahman
    Muser, Christoph
    Kutscha-Lissberg, Felix
    Kremnitzer, Peter
    PROCEEDINGS OF THE INTERNATIONAL RENEWABLE ENERGY STORAGE CONFERENCE, IRES 2022, 2023, 16 : 470 - 488
  • [4] The impact of large-scale thermal energy storage in the energy system
    Sifnaios, Ioannis
    Sneum, Daniel Moller
    Jensen, Adam R.
    Fan, Jianhua
    Bramstoft, Rasmus
    APPLIED ENERGY, 2023, 349
  • [5] A review of large-scale electrical energy storage
    Hameer, Sameer
    van Niekerk, Johannes L.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (09) : 1179 - 1195
  • [6] Large-scale energy storage for carbon neutrality: thermal energy storage for electrical vehicles
    Zhao, Weiwei
    Lin, Xuefeng
    Zhang, Tongtong
    Ding, Yulong
    CARBON NEUTRALITY, 2024, 3 (01):
  • [7] Thermal energy storage materials and systems for solar energy applications
    Alva, Guruprasad
    Liu, Lingkun
    Huang, Xiang
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 : 693 - 706
  • [8] A critical review on thermal energy storage materials and systems for solar applications
    Prasadi, D. M. Reddy
    Senthilkumar, R.
    Lakshmanarao, Govindarajan
    Krishnan, Saravanakumar
    Prasad, Naveen
    AIMS ENERGY, 2019, 7 (04) : 507 - 526
  • [9] Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems
    Dahash, Abdulrahman
    Ochs, Fabian
    Janetti, Michele Bianchi
    Streicher, Wolfgang
    APPLIED ENERGY, 2019, 239 : 296 - 315
  • [10] An Overview of Thermal Energy Storage (TES) Materials and Systems for Storage Applications
    Caramitu, Alina Ruxandra
    Lungu, Magdalena Valentina
    EEA - Electrotehnica, Electronica, Automatica, 2024, 72 (04): : 28 - 42