A Unified Generative Adversarial Network With Convolution and Transformer for Remote Sensing Image Fusion

被引:0
|
作者
Wu, Yuanyuan [1 ,2 ]
Huang, Mengxing [1 ,3 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Guangdong Ocean Univ, Sch Elect & Informat Engn, Zhanjiang 524088, Peoples R China
[3] Hainan Univ, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatial resolution; Image resolution; Transformers; Generative adversarial networks; Biological system modeling; Pansharpening; Data models; Bidirectional local-global feature encoder; convolution and Transformer; multihead cross-attention fusion; multiresolution convolutional Transformer discriminators; remote sensing image (RSI) unified fusion model; SATELLITE IMAGES; LANDSAT; QUALITY; REFLECTANCE; FRAMEWORK; MODEL; MS;
D O I
10.1109/TGRS.2024.3441719
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Images derived from an individual sensor fail to simultaneously satisfy the demands of high spatial, spectral, and temporal resolutions. Multisource remote sensing image (RSI) fusion provides efficient access to high-spatial-resolution multispectral (HRMS) images [spatial-spectral fusion (SSF)] and high temporal- and spatial-resolution images [spatiotemporal fusion (STF)]. While existing deep learning (DL)-based models can mainly implement either SSF or STF, there is an urgent need for models that can simultaneously implement both SSF and STF. A unified generative adversarial network with convolution and Transformer (CTUGAN) for SSF and STF is proposed. CTUGAN contains a adaptive convolutional Transformer generator (ACTG) and multiresolution convolutional Transformer discriminator (MCTD), both with the convolution and Transformer. First, a bidirectional local-global feature encoder is devised in the ACTG to extract local-global features via a high-to-low resolution and a low-to-high resolution. Then, a multihead cross-attention fusion decoder (MCAFD) is devised to aggregate and fuse complementary local-global features of various levels and resolutions hierarchically to restore valuable information. Moreover, MCTDs adversely learn multiresolution local-global features to identify the relative reality of products, and a generalized loss function is built to accomplish full supervision. Finally, numerous experiments on the SSF data (Gaofen-2 (GF-2) and QuikBird) and STF data [Coleambally Irrigation Area (CIA) and lower Gwydir catchment (LGC)] demonstrate that the proposed CTUGAN model outperforms both subjective and objective evaluations.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Image recognition algorithms based on deep convolution generative adversarial network
    Liu Lian-qiu
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2020, 35 (04) : 383 - 388
  • [42] Remote Sensing Image Super-Resolution Using Texture Enhancing Generative Adversarial Network
    Che, Shou-Quan
    Lu, Jian-Feng
    Journal of Computers (Taiwan), 2023, 34 (05) : 87 - 101
  • [43] Towards a Novel Generative Adversarial Network-Based Framework for Remote Sensing Image Demosaicking
    Guo, Yuxuan
    Zhang, Xuemin
    Jin, Guang
    REMOTE SENSING, 2024, 16 (13)
  • [44] A Scene Images Diversity Improvement Generative Adversarial Network for Remote Sensing Image Scene Classification
    Pan, Xin
    Zhao, Jian
    Xu, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) : 1692 - 1696
  • [45] Convolution neural network with edge structure loss for spatiotemporal remote sensing image fusion
    Lei, Dajiang
    Bai, Menghao
    Zhang, Liping
    Li, Weisheng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (03) : 1015 - 1036
  • [46] Generative Adversarial Networks Based on Transformer Encoder and Convolution Block for Hyperspectral Image Classification
    Bai, Jing
    Lu, Jiawei
    Xiao, Zhu
    Chen, Zheng
    Jiao, Licheng
    REMOTE SENSING, 2022, 14 (14)
  • [47] Multimodal Fusion Transformer for Remote Sensing Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Hong, Danfeng
    Rasti, Behnood
    Plaza, Antonio
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] Infrared and Visible Image Fusion with a Generative Adversarial Network and a Residual Network
    Xu, Dongdong
    Wang, Yongcheng
    Xu, Shuyan
    Zhu, Kaiguang
    Zhang, Ning
    Zhang, Xin
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [49] WSGAN: An Improved Generative Adversarial Network for Remote Sensing Image Road Network Extraction by Weakly Supervised Processing
    Hu, Anna
    Chen, Siqiong
    Wu, Liang
    Xie, Zhong
    Qiu, Qinjun
    Xu, Yongyang
    REMOTE SENSING, 2021, 13 (13)
  • [50] Improved Generative Adversarial Networks for VHR Remote Sensing Image Classification
    Shi, Cheng
    Fang, Li
    Lv, Zhiyong
    Shen, Huifang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19