Aerosolisation of per- and polyfluoroalkyl substances (PFAS) during aeration of contaminated aqueous solutions

被引:1
|
作者
Kizhakkethil, Jishnu Pandamkulangara [1 ]
Shi, Zongbo [2 ]
Bogush, Anna [1 ]
Kourtchev, Ivan [1 ]
机构
[1] Coventry Univ, Ctr Agroecol Water & Resilience CAWR, Wolston Lane, Ryton Dunsmore CV8 3LG, England
[2] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, England
关键词
FTS; PFOS; PFOA; Aerosols; Forever chemicals; TO-AIR TRANSFER; PERFLUOROCARBOXYLIC ACIDS; PERFLUOROALKYL ACIDS; WATER; PFOA; TRANSPORT; SORPTION; FILTERS;
D O I
10.1016/j.atmosenv.2024.120716
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Environmental pollution by perand polyfluoroalkyl substances (PFAS), commonly known as "forever chemicals", is a major concern. Numerous studies have identified PFAS in various environmental matrices including groundwater, surface water, sea, soil, and atmosphere. Nevertheless, the atmospheric presence of PFAS remains an underexplored area. The exact sources of PFAS in the atmosphere and the mechanisms governing their transfer remain largely elusive. In this study, we investigated, for the first time, the influence of aeration on the aqueous-to-air transfer, of a range of short-, medium-, and long-chain PFAS from aqueous solutions contaminated with PFAS at concentrations and pHs relevant to those at industrial wastewater treatment. PFAS enriched aerosols were generated from the aqueous solutions under three tested pH conditions which were found to affect the partitioning of the individual PFAS. The extent of PFAS aerosolisation also showed a clear dependence on the analyte's carbon chain length and functional groups. Specifically, the propensity for partitioning into aerosols increased with increasing PFAS carbon chain length. Notably, perfluorosulfonic acids (PFSA) demonstrated a greater potential for aerosolisation compared to perfluorocarboxylic acids (PFCA). Legacy PFAS including perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS) and a new generation replacement PFAS 8:2 Fluorotelomer sulfonate (8:2 FTS) showed a significant transfer to aerosols from the aqueous solutions. Our results suggest that processes involving aeration of contaminated water (including those at industry) with PFAS could potentially act as a source of atmospheric PFAS.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Per- and polyfluoroalkyl substances (PFAS) on aquatic food products
    Ural, Gizem Nazli
    Topuz, Osman Kadir
    Unluesayin, Mustafa
    TOXIN REVIEWS, 2024,
  • [22] Per- and polyfluoroalkyl substances (PFAS) in solar photovoltaic modules
    Nain, Preeti
    Anctil, Annick
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 215
  • [23] Per- and polyfluoroalkyl substances (PFAS) in sediment: a source of PFAS to the food web?
    Endicott, Douglas
    Silva-Wilkinson, Robin
    Mccauley, Dennis
    Armstrong, Brandon
    INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, 2025,
  • [24] A review of foam fractionation for the removal of per- and polyfluoroalkyl substances (PFAS) from aqueous matrices
    We, Angel Chyi En
    Zamyadi, Arash
    Stickland, Anthony D.
    Bradley O., Clarke
    Freguia, Stefano
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 465
  • [25] Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing
    Schymanski, Emma L.
    Zhang, Jian
    Thiessen, Paul A.
    Chirsir, Parviel
    Kondic, Todor
    Bolton, Evan E.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (44) : 16918 - 16928
  • [26] Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids
    Garg, Anushka
    Shetti, Nagaraj P.
    Basu, Soumen
    Nadagouda, Mallikarjuna N.
    Aminabhavi, Tejraj M.
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [27] Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS)
    Clark, Rebecca B.
    Dick, Jeffrey E.
    CHEMICAL COMMUNICATIONS, 2021, 57 (66) : 8121 - 8130
  • [28] Tools for Investigating the Expanding Per- and Polyfluoroalkyl Substances (PFAS) Universe
    Schwichtenberg, Trevor
    LCGC NORTH AMERICA, 2022, 40 (11) : 546 - 548
  • [29] Multidimensional library for the improved identification of per- and polyfluoroalkyl substances (PFAS)
    Joseph, Kara M.
    Boatman, Anna K.
    Dodds, James N.
    Kirkwood-Donelson, Kaylie I.
    Ryan, Jack P.
    Zhang, Jian
    Thiessen, Paul A.
    Bolton, Evan E.
    Valdiviezo, Alan
    Sapozhnikova, Yelena
    Rusyn, Ivan
    Schymanski, Emma L.
    Baker, Erin S.
    SCIENTIFIC DATA, 2025, 12 (01)
  • [30] An Integrated Approach for Determination of Total Per- and Polyfluoroalkyl Substances (PFAS)
    Shojaei, Marzieh
    Kumar, Naveen
    Guelfo, Jennifer L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (20) : 14517 - 14527