BreathFinder: A Method for Non-Invasive Isolation of Respiratory Cycles Utilizing the Thoracic Respiratory Inductance Plethysmography Signal

被引:0
|
作者
Holm, Benedikt [1 ]
Borsky, Michal [1 ]
Arnardottir, Erna S. [2 ,3 ]
Serwatko, Marta [2 ]
Mallett, Jacky [1 ]
Islind, Anna Sigridur [1 ]
Oskarsdottir, Maria [1 ]
机构
[1] Reykjavik Univ, Sch Technol, Dept Comp Sci, Reykjavik, Iceland
[2] Reykjavik Univ, Sleep Inst, Sch Technol, Reykjavik, Iceland
[3] Natl Univ Hosp Iceland, Landspitali, Reykjavik, Iceland
来源
NATURE AND SCIENCE OF SLEEP | 2024年 / 16卷
基金
欧盟地平线“2020”;
关键词
respiratory analysis; breath detection algorithm; sleep analysis; breath segmentation; respiratory cycle isolation; SLEEP;
D O I
10.2147/NSS.S468431
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: The field of automatic respiratory analysis focuses mainly on breath detection on signals such as audio recordings, or nasal flow measurement, which suffer from issues with background noise and other disturbances. Here we introduce a novel algorithm designed to isolate individual respiratory cycles on a thoracic respiratory inductance plethysmography signal using the non-invasive signal of the respiratory inductance plethysmography belts. Purpose: The algorithm locates breaths using signal processing and statistical methods on the thoracic respiratory inductance plethysmography belt and enables the analysis of sleep data on an individual breath level. Patients and Methods: The algorithm was evaluated against a cohort of 31 participants, both healthy and diagnosed with obstructive sleep apnea. The dataset consisted of 13 female and 18 male participants between the ages of 20 and 69. The algorithm was evaluated on 7.3 hours of hand-annotated data from the cohort, or 8782 individual breaths in total. The algorithm was specifically evaluated on a dataset containing many sleep-disordered breathing events to confirm that it did not suffer in terms of accuracy when detecting breaths in the presence of sleep-disordered breathing. The algorithm was also evaluated across many participants, and we found that its accuracy was consistent across people. Source code for the algorithm was made public via an open-source Python library. Results: The proposed algorithm achieved an estimated 94% accuracy when detecting breaths in respiratory signals while producing false positives that amount to only 5% of the total number of detections. The accuracy was not affected by the presence of respiratory related events, such as obstructive apneas or snoring. Conclusion: This work presents an automatic respiratory cycle algorithm suitable for use as an analytical tool for research based on individual breaths in sleep recordings that include respiratory inductance plethysmography.
引用
收藏
页码:1253 / 1266
页数:14
相关论文
共 50 条
  • [31] Non-Invasive Assessment Of Regional Respiratory Airflow In Acute Respiratory Failure Patients
    Mauri, T.
    Turrini, C.
    Eronia, N.
    Cambiaghi, B.
    Grasselli, G.
    Tagliabue, P.
    Sasso, T.
    Bellani, G.
    Gattinoni, L.
    Pesenti, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193
  • [32] Adult Respiratory Syncytial Virus Infection and Non-invasive Ventilation in Respiratory Failure
    Sun, G. C.
    Aljareh, A.
    Khan, Z.
    Bachan, M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [33] Home exercise training with non-invasive ventilation in thoracic restrictive respiratory disorders: A randomised study
    Borel, Jean-Christian
    Verges, Samuel
    Pepin, Jean-Louis
    Vivodtzev, Isabelle
    Levy, Patrick
    Wuyam, Bernard
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2009, 167 (02) : 168 - 173
  • [34] CONTINUOUS, NON-INVASIVE MONITORING OF RESPIRATORY STATUS OF INJURED LUNG IN PATIENTS WITH TRAUMATIC THORACIC INJURIES
    Freeman, Jenny
    Galvagno, Samuel
    Corneille, Michael
    Voscopoulous, Christopher
    Sordo, Salvador
    Brayanov, Jordan
    CRITICAL CARE MEDICINE, 2012, 40 (12) : U117 - U117
  • [35] Non-invasive ventilation in acute respiratory failure - British thoracic society standards of care committee
    Baudouin, S
    Blumenthal, S
    Cooper, B
    Davidson, C
    Davison, A
    Elliott, M
    Kinnear, W
    Paton, R
    Sawicka, E
    Turner, L
    THORAX, 2002, 57 (03) : 192 - 211
  • [36] Mechanisms of improvement of respiratory failure in patients with restrictive thoracic disease treated with non-invasive ventilation
    Nickol, AH
    Hart, N
    Hopkinson, NS
    Moxham, J
    Simonds, A
    Polkey, MI
    THORAX, 2005, 60 (09) : 754 - 760
  • [38] A novel method of detecting the ballistocardiograph from respiratory inductance plethysmography signals recorded during sleep
    Olafsdottir, G. H.
    Finnsson, E.
    Loftsdottir, D. L.
    Jonsson, S. Ae
    Helgadottir, H.
    Agustsson, J. S.
    JOURNAL OF SLEEP RESEARCH, 2020, 29 : 197 - 197
  • [39] Non-invasive ventilation in acute respiratory failure in children
    Abadesso, Clara
    Nunes, Pedro
    Silvestre, Catarina
    Matias, Ester
    Loureiro, Helena
    Almeida, Helena
    PEDIATRIC REPORTS, 2012, 4 (02) : 57 - 63
  • [40] Advances in Non-invasive Respiratory Support in the ICU.
    Pons Odena, Marti
    PEDIATRIC PULMONOLOGY, 2018, 53 : S34 - S35