Superconductivity of the grain boundaries in boron-doped nanocrystalline diamond

被引:0
|
作者
Bhattacharyya, Somnath [1 ]
机构
[1] Univ Witwatersrand, Sch Phys, Nanoscale Transport Phys Lab, Private Bag 3, ZA-2050 Johannesburg, Wits, South Africa
基金
新加坡国家研究基金会;
关键词
Nanocrystalline diamond; grain boundaries; superconductivity; low-temperature transport; magnetoresistance; HRTEM; microstructure; boron-doping; MODEL; ORIGIN; PHASE; BANDS;
D O I
10.1142/S0217979225400429
中图分类号
O59 [应用物理学];
学科分类号
摘要
The signature of the anisotropic superconducting order parameter (Delta) in heavily boron-doped nanocrystalline diamond (BNCD) films is demonstrated from the low-temperature resistivity and magnetoresistance measurements. Due to the presence of boron acceptors predominantly at the well-aligned grain boundaries, Rashba-type spin-orbit coupling can arise which influences the superconducting properties of these films. The one-dimensional (1D) filamentary channels of the grain boundaries suggest the modulation of the Delta which explains the peaks observed in the temperature-dependent resistance. This also explains the oscillatory magnetoresistance as a function of the magnetic fields and their angle dependence. From the observed superlattice-like microstructure of the BNCD films, a possible mechanism for creating Fulde-Ferrel and Larkin-Ovchinnikov (FFLO)-type state and chiral vortex lines from the superposition of multiple (Andreev) bound states is discussed. Overall, the interface states of the diamond films can be explained by the well-known Su-Schrieffer-Heeger "soliton" model which is supported by the observation of a zero-bias conductance peak.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [41] Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection
    Dincer, Can
    Ktaich, Rabih
    Laubender, Elmar
    Hees, J. Jakob
    Kieninger, Jochen
    Nebel, Christoph E.
    Heinze, Juergen
    Urban, Gerald A.
    ELECTROCHIMICA ACTA, 2015, 185 : 101 - 106
  • [42] Microstructure and Anisotropic Order Parameter of Boron-Doped Nanocrystalline Diamond Films
    Bhattacharyya, Somnath
    CRYSTALS, 2022, 12 (08)
  • [43] Fluctuation spectroscopy in granular superconductors with application to boron-doped nanocrystalline diamond
    Perkins, D. T. S.
    Klemencic, G. M.
    Fellows, J. M.
    Smith, R. A.
    PHYSICAL REVIEW B, 2021, 104 (09)
  • [44] Low-temperature transport in highly boron-doped nanocrystalline diamond
    Achatz, P.
    Gajewski, W.
    Bustarret, E.
    Marcenat, C.
    Piquerel, R.
    Chapelier, C.
    Dubouchet, T.
    Williams, O. A.
    Haenen, K.
    Garrido, J. A.
    Stutzmann, M.
    PHYSICAL REVIEW B, 2009, 79 (20)
  • [45] Processing of nanoscale gaps for boron-doped nanocrystalline diamond based MEMS
    Iankov, Dimitre
    Zuerbig, Verena
    Pletschen, Wilfried
    Giese, Christian
    Iannucci, Robert
    Ambacher, Oliver
    Lebedev, Vadim
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 903 - 906
  • [46] Compressibility of boron-doped diamond
    Dubrovinskaia, N.
    Dubrovinsky, L.
    Crichton, W. A.
    Zarechnaya, E.
    Isaev, E. I.
    Abrikosov, I. A.
    HIGH PRESSURE RESEARCH, 2006, 26 (02) : 79 - 85
  • [47] Conductivity in boron-doped diamond
    Mamin, RF
    Inushima, T
    PHYSICAL REVIEW B, 2001, 63 (03)
  • [48] Boron-doped diamond superconducts
    不详
    CHEMICAL & ENGINEERING NEWS, 2004, 82 (14) : 56 - 56
  • [49] AN APFIM ANALYSIS OF GRAIN-BOUNDARIES AND PRECIPITATION IN BORON-DOPED NIAL
    JAYARAM, R
    MILLER, MK
    SURFACE SCIENCE, 1992, 266 (1-3) : 310 - 315
  • [50] Atomic and electronic structure of boron-doped diamond grain boundaries studied by ARHVTEM and ab-initio calculation
    Togawa, H
    Ichinose, H
    NEW APPLICATIONS FOR WIDE-BANDGAP SEMICONDUCTORS, 2003, 764 : 111 - 115