Wafer-Scale Freestanding Monocrystalline Chalcogenide Membranes by Strain-Assisted Epitaxy and Spalling

被引:0
|
作者
Yoo, Changhyeon [1 ]
Shin, Han-Kyun [1 ,2 ]
Han, Sang Sub [1 ]
Lee, Seohui [1 ,3 ]
Lee, Chung Won [1 ]
Song, Yu-Jin [2 ]
Bae, Tae-Sung [4 ]
Yoo, Seung Jo [4 ]
Cao, Justin [1 ,5 ]
Kim, Jung Han [2 ]
Lee, Hyo-Jong [2 ]
Chung, Hee-Suk [4 ]
Jung, Yeonwoong [1 ,5 ,6 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Dong A Univ, Dept Mat Sci & Engn, Busan 49315, South Korea
[3] Univ Cent Florida, Dept Chem, Orlando, FL 32826 USA
[4] Korea Basic Sci Inst, Res Ctr Mat Anal, Daejeon 34133, South Korea
[5] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA
[6] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
GeTe; GeSe; Thin films; Membranes; Epitaxial growth; Ni spalling; Chalcogenide; Freestanding films; Flexible electronics; Phasechange materials; PCM; RAMAN-SCATTERING; THIN-FILMS; GETE; GROWTH; MEMORY; MECHANISM; GRAPHENE; LAYERS;
D O I
10.1021/acs.nanolett.4c03127
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Monocrystalline chalcogenide thin films in freestanding forms are very much needed in advanced electronics such as flexible phase change memories (PCMs). However, they are difficult to manufacture in a scalable manner due to their growth and delamination challenges. Herein, we report a viable strategy for a wafer-scale epitaxial growth of monocrystalline germanium telluride (GeTe) membranes and their deterministic integrations onto flexible substrates. GeTe films are epitaxially grown on Ge wafers via a tellurization reaction accompanying a formation of confined dislocations along GeTe/Ge interfaces. The as-grown films are subsequently delaminated off the wafers, preserving their wafer-scale structural integrity, enabled by a strain-engineered spalling method that leverages the stress-concentrated dislocations. The versatility of this wafer epitaxy and delamination approach is further expanded to manufacture other chalcogenide membranes, such as germanium selenide (GeSe). These materials exhibit phase change-driven electrical switching characteristics even in freestanding forms, opening up unprecedented opportunities for flexible PCM technologies.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Wafer-scale MoS2 with water-vapor assisted showerhead MOCVD
    Macha, Michal
    Ji, Hyun Goo
    Tripathi, Mukesh
    Zhao, Yanfei
    Thakur, Mukeshchand
    Zhang, Jing
    Kis, Andras
    Radenovic, Aleksandra
    NANOSCALE ADVANCES, 2022, 4 (20): : 4391 - 4401
  • [32] Epitaxy of wafer-scale bilayer MoS2 thin film for P-N diodes
    Zheng, Zhi
    Hai, Liang
    Zhang, Hongyuan
    Lou, Xiaoding
    Zhai, Tianyou
    Xia, Fan
    MATTER, 2022, 5 (11) : 3580 - 3582
  • [33] Wafer-scale all-epitaxial GeSn-on-insulator on Si(111) by molecular beam epitaxy
    Khiangte, Krista R.
    Rathore, Jaswant S.
    Schmidt, J.
    Osten, H. J.
    Laha, A.
    Mahapatra, S.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (32)
  • [34] Wafer-Scale and Topologically Nontrivial α-Sn Films Grown on InSb (001) by Molecular-Beam Epitaxy
    Ding, Yuanfeng
    Song, Huanhuan
    Huang, Junwei
    Yao, Jinshan
    Gu, Yu
    Wei, Lian
    Chen, Y. B.
    Deng, Yu
    Yuan, Hongtao
    Lu, Hong
    Chen, Yan-Feng
    PHYSICAL REVIEW APPLIED, 2022, 17 (01)
  • [35] A hydrogen separation module based on wafer-scale micromachined palladium-silver alloy membranes
    Tong, HD
    Gielens, FC
    Hoang, HT
    Berenschot, JW
    De Boer, MJ
    Gardeniers, JGE
    Jansen, HV
    Nijdam, W
    van Rijn, CJM
    Elwenspoek, MC
    BOSTON TRANSDUCERS'03: DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2003, : 1742 - 1745
  • [36] WAFER-SCALE UNIFORMITY OF VERTICAL-CAVITY LASERS GROWN BY MODIFIED PHASE-LOCKED EPITAXY TECHNIQUE
    WALKER, JD
    KUCHTA, DM
    SMITH, JS
    ELECTRONICS LETTERS, 1993, 29 (02) : 239 - 240
  • [37] Wafer-scale Thermodynamically Stable GaN Nanorods via TwoStep Self-Limiting Epitaxy for Optoelectronic Applications
    Kum, Hyun
    Seong, Han-Kyu
    Lim, Wantae
    Chun, Daemyung
    Kim, Young-il
    Park, Youngsoo
    Yoo, Geonwook
    SCIENTIFIC REPORTS, 2017, 7
  • [38] Wafer-scale epitaxy of transition-metal dichalcogenides with continuous single-crystallinity and engineered defect density
    Hakami, Mariam
    Tseng, Chien-Chih
    Nanjo, Kohei
    Tung, Vincent
    Fu, Jui-Han
    MRS BULLETIN, 2023, 48 (09) : 923 - 931
  • [39] Thermally annealed wafer-scale h-BN films grown on sapphire substrate by molecular beam epitaxy
    Liu, F.
    Rong, X.
    Yu, Y.
    Wang, T.
    Sheng, B. W.
    Wei, J. Q.
    Liu, S. F.
    Yang, J. J.
    Bertram, F.
    Xu, F. J.
    Yang, X. L.
    Zhang, Z. H.
    Qin, Z. X.
    Zhang, Y. T.
    Shen, B.
    Wang, X. Q.
    APPLIED PHYSICS LETTERS, 2020, 116 (14)
  • [40] Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control
    Li, Lu
    Wang, Qinqin
    Wu, Fanfan
    Xu, Qiaoling
    Tian, Jinpeng
    Huang, Zhiheng
    Wang, Qinghe
    Zhao, Xuan
    Zhang, Qinghua
    Fan, Qinkai
    Li, Xiuzhen
    Peng, Yalin
    Zhang, Yangkun
    Ji, Kunshan
    Zhi, Aomiao
    Sun, Huacong
    Zhu, Mingtong
    Zhu, Jundong
    Lu, Nianpeng
    Lu, Ying
    Wang, Shuopei
    Bai, Xuedong
    Xu, Yang
    Yang, Wei
    Li, Na
    Shi, Dongxia
    Xian, Lede
    Liu, Kaihui
    Du, Luojun
    Zhang, Guangyu
    NATURE COMMUNICATIONS, 2024, 15 (01)