Singular p-biharmonic problem with the Hardy potential

被引:1
|
作者
Drissi, Amor [1 ]
Ghanmi, Abdeljabbar [1 ]
Repovs, Dusan D. [2 ,3 ,4 ]
机构
[1] Tunis El Manar Univ, Fac Sci, Dept Math, Tunis 2092, Tunisia
[2] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[4] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
来源
关键词
p-biharmonic equation; variational methods; existence of solutions; Hardy potential; Nehari manifold; fibering map; SIGN-CHANGING SOLUTIONS; NONTRIVIAL SOLUTIONS; EQUATIONS; LAPLACIAN; EXISTENCE;
D O I
10.15388/namc.2024.29.35410
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study existence results for a singular problem involving the p-biharmonic operator and the Hardy potential. More precisely, by combining monotonicity arguments with the variational method, the existence of solutions is established. By using the Nehari manifold method, the multiplicity of solutions is proved. An example is also given to illustrate the importance of these results.
引用
收藏
页码:762 / 782
页数:21
相关论文
共 50 条