Brain-inspired Multimodal Synaptic Memory via Mechano-photonic Plasticized Asymmetric Ferroelectric Heterostructure

被引:0
|
作者
Gong, Jie [1 ,2 ]
Wei, Yichen [2 ,3 ]
Wang, Yifei [2 ,4 ]
Feng, Zhenyu [2 ,3 ]
Yu, Jinran [2 ,4 ]
Cheng, Liuqi [2 ,4 ]
Chen, Mingxia [1 ,2 ]
Li, Linlin [1 ,2 ,4 ]
Wang, Zhong Lin [2 ,5 ]
Sun, Qijun [1 ,2 ,3 ,4 ,6 ]
机构
[1] Guangxi Univ, Ctr Nanoenergy Res, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[4] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[5] Georgia Inst Technol, Atlanta, GA 30332 USA
[6] Shandong Zhongke Naneng Energy Technol Co Ltd, Dongying 257061, Peoples R China
基金
中国国家自然科学基金;
关键词
asymmetric ferroelectric heterostructures; dynamic logic; multimodal; synaptic memory; triboelectric potential; ARTIFICIAL SYNAPSES; TRANSISTORS;
D O I
10.1002/adfm.202408435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Neuromorphic devices capable of emulating biological synaptic behaviors are crucial for implementing brain-like information processing and computing. Emerging 2D ferroelectric neuromorphic devices provide an effective means of updating synaptic weight aside from conventional electrical/optical modulations. Here, by further synergizing with an energy-efficient synaptic plasticity strategy, a multimodal mechano-photonic synaptic memory device based on 2D asymmetric ferroelectric heterostructure is presented, which can be modulated by external mechanical behavior and light illumination. By integrating the asymmetric ferroelectric heterostructured field-effect transistor and a triboelectric nanogenerator, the mechanical displacement-derived triboelectric potential is ready for gating, programming, and plasticizing the synaptic device, resulting in superior electrical properties of high on/off ratios (> 10(7)), large storage windows (equivalent to approximate to 95 V), excellent charge retention capability (> 10(4) s), good endurance (> 10(3) cycles), and primary synaptic behaviors. Besides, optical illumination can effectively synergize with mechanoplasticity to implement multimodal spatiotemporally correlated dynamic logic. The demonstrated multimodal memory synapse provides a facile and promising strategy for multifunctional sensory memory, interactive neuromorphic devices, and future brain-like electronics embodying artificial intelligence.
引用
收藏
页数:13
相关论文
共 8 条
  • [1] Brain-inspired ferroelectric Si nanowire synaptic device
    Lee, M.
    Park, W.
    Son, H.
    Seo, J.
    Kwon, O.
    Oh, S.
    Hahm, M. G.
    Kim, U. J.
    Cho, B.
    [J]. APL MATERIALS, 2021, 9 (03):
  • [2] Brain-inspired computing via memory device physics
    Ielmini, D.
    Wang, Z.
    Liu, Y.
    [J]. APL MATERIALS, 2021, 9 (05)
  • [3] Optoelectronic Synaptic Transistors via Adding Insulator Into Semiconductor for Brain-Inspired Computing
    Shi, Jiahao
    Chen, Cihai
    Li, Xiuyan
    Chen, Huanting
    Lin, Huichuan
    Chen, Zhixiang
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, : 6989 - 6995
  • [4] Metal oxide resistive random access memory based synaptic devices for brain-inspired computing
    Gao, Bin
    Kang, Jinfeng
    Zhou, Zheng
    Chen, Zhe
    Huang, Peng
    Liu, Lifeng
    Liu, Xiaoyan
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (04)
  • [5] Brain-Inspired Recognition System Based on Multimodal In-Memory Computing Framework for Edge AI
    Xiao, He
    Xie, Dirui
    Hu, Xiaofang
    Zhou, Yue
    Zhou, Guangdong
    Duan, Shukai
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (05) : 2294 - 2307
  • [6] Memory Switching versus Threshold Memory Switching: Finding a Promising Synaptic Device for Brain-Inspired Artificial Learning Systems
    Yadav, Mani Shankar
    Varshney, Kanupriya
    Rawat, Brajesh
    [J]. ACS APPLIED ENGINEERING MATERIALS, 2024, 2 (08): : 2131 - 2142
  • [7] A Brain-Inspired In-Memory Computing System for Neuronal Communication via Memristive Circuits
    Ji, Xiaoyue
    Dong, Zhekang
    Lai, Chun Sing
    Qi, Donglian
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2022, 60 (01) : 100 - 106
  • [8] Few-shot Generation via Recalling Brain-Inspired Episodic-Semantic Memory
    Duan, Zhibin
    Lv, Zhiyi
    Wang, Chaojie
    Chen, Bo
    An, Bo
    Zhou, Mingyuan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,