Progressive Decision Boundary Shifting for Unsupervised Domain Adaptation

被引:1
|
作者
Li, Liang [1 ]
Lu, Tongyu [2 ]
Sun, Yaoqi [3 ]
Gao, Yuhan [3 ]
Yan, Chenggang [2 ]
Hu, Zhenghui [4 ]
Huang, Qingming [5 ,6 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Peoples R China
[3] Hangzhou Dianzi Univ, Lishui Inst, Hangzhou 323000, Zhejiang, Peoples R China
[4] Beihang Univ, Hangzhou Innovat Inst, Beijing 323008, Zhejiang, Peoples R China
[5] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
[6] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Feature extraction; Semantics; Task analysis; Training; Adversarial machine learning; Symbols; Domain shifting; progressive decision boundary; self-learning; unsupervised domain adaptation (UDA);
D O I
10.1109/TNNLS.2024.3431283
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) is attracting more attention from researchers for boosting the task-specific generalization on target domain. It focuses on addressing the domain shift between the labeled source domain and the unlabeled target domain. Recent biclassifier-based UDA models perform category-level alignment to reduce domain shift, and meanwhile, self-training is used for improving the discriminability of target instances. However, the error accumulation problem of instances with high semantic uncertainty may cause discriminability degradation and category-level misalignment. To solve this issue, we design the progressive decision boundary shifting algorithm, where stable category information of target instances is explored for learning a discriminability structure on target domain. Specifically, we first model the semantic uncertainty of instances by progressively shifting decision boundaries of category. Then, we introduce the uncertainty decoupling in a contrastive manner, where the discriminative information is learned from the source domain for instance with low semantic uncertainty. Furthermore, we minimize the predictive entropy of instances with high semantic uncertainty to reduce their prediction confidence. Extensive experiments on three popular datasets show that our model outperforms the current state-of-the-art (SOTA) UDA methods.
引用
收藏
页码:274 / 285
页数:12
相关论文
共 50 条
  • [41] Unsupervised double weighted domain adaptation
    Li, Jingyao
    Li, Zhanshan
    Lu, Shuai
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08): : 3545 - 3566
  • [42] Distributionally robust unsupervised domain adaptation
    Wang, Yibin
    Wang, Haifeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 436
  • [43] CUDA: Contradistinguisher for Unsupervised Domain Adaptation
    Balgi, Sourabh
    Dukkipati, Ambedkar
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 21 - 30
  • [44] Unsupervised Domain Adaptation on Reading Comprehension
    Cao, Yu
    Fang, Meng
    Yu, Baosheng
    Zhou, Joey Tianyi
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 7480 - 7487
  • [45] Unsupervised Source Selection for Domain Adaptation
    Vogt, Karsten
    Paul, Andreas
    Ostermann, Joern
    Rottensteiner, Franz
    Heipke, Christian
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2018, 84 (05): : 249 - 261
  • [46] Deep Unsupervised Convolutional Domain Adaptation
    Zhuo, Junbao
    Wang, Shuhui
    Zhang, Weigang
    Huang, Qingming
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 261 - 269
  • [47] Unsupervised Domain Adaptation with Similarity Learning
    Pinheiro, Pedro O.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8004 - 8013
  • [48] On a regularization of unsupervised domain adaptation in RKHS
    Gizewski, Elke R.
    Mayer, Lukas
    Moser, Bernhard A.
    Nguyen, Duc Hoan
    Pereverzyev, Sergiy, Jr.
    Pereverzyev, Sergei V.
    Shepeleva, Natalia
    Zellinger, Werner
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 57 : 201 - 227
  • [49] Unsupervised Evaluation of Lidar Domain Adaptation
    Hubschneider, Christian
    Roesler, Simon
    Zoellner, J. Marius
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [50] A Survey of Unsupervised Deep Domain Adaptation
    Wilson, Garrett
    Cook, Diane J.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (05)