Prediction of Optimal Design Parameters for Reinforced Soil Embankments with Wrapped Faces Using a GA-BP Neural Network

被引:1
|
作者
Dong, Yifei [1 ]
Yang, Jun [1 ]
Qin, Yiyuan [2 ]
机构
[1] China Three Gorges Univ, Dept Civil Engn, Yichang 443002, Peoples R China
[2] Zhengzhou Univ, Dept Civil Engn, Zhengzhou 450000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
关键词
BP neural network; genetic algorithm; reinforced soil embankment with a wrapped face; MARGINAL BACKFILLS; CENTRIFUGE MODEL; WALLS;
D O I
10.3390/app14166910
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Under the same geological conditions, the thickness and length of the reinforced strip, the slope ratio of the reinforced embankment, the modulus of elasticity of the fill and the reinforced strip, and the friction angle at the interface between the reinforcement and the soil, are the main design parameters that have an important influence on the stress, deformation, and stability of the encompassing reinforced soil embankment. To quickly and accurately determine the optimal design parameters for reinforced soil embankments with wrapped faces, ensuring minimal cost, while maintaining structural safety, we propose a design parameter prediction model based on a GA-BP neural network. This model evaluates parameters within their specified ranges, using maximum lateral displacement, maximum vertical displacement, maximum stress in the XZ direction, the maximum shear strain increment, and the safety factor, as assessment criteria. The primary objective is to minimize the overall cost of the embankment. A comparison with five machine learning algorithms shows that the model has high prediction accuracy, and the optimal design parameter combinations obtained from the optimization search can significantly reduce the cost of the embankment, while controlling the displacement and stability of the embankment. Therefore, the GA-BP network is suitable for predicting the optimal design parameters of reinforced soil embankments with wrapped faces.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Prediction of long-term settlement in shield tunnel using GA-BP neural network
    Shen, Yi-Ming
    Zhang, Dong-Mei
    Zhang, Jie
    Zhang, Dong-Mei
    Zhang, Jie
    GEOTECHNICAL ASPECTS OF UNDERGROUND CONSTRUCTION IN SOFT GROUND, 2021, : 656 - 663
  • [22] Identification of the shear parameters for lunar regolith based on a GA-BP neural network
    Zou, Meng
    Xue, Long
    Gai, Hongjian
    Dang, Zhaolong
    Wang, Song
    Xu, Peng
    JOURNAL OF TERRAMECHANICS, 2020, 89 : 21 - 29
  • [23] Prediction of Rice Processing Loss Rate Based on GA-BP Neural Network
    Yang, Hua
    Li, Jian
    Liu, Neng
    Yi, Kecheng
    Wang, Jing
    Fu, Rou
    Zhang, Jun
    Xiang, Yunzhu
    Yang, Pengcheng
    Hang, Tianyu
    Zhang, Tiancheng
    Wang, Siyi
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 2, BIC-TA 2023, 2024, 2062 : 121 - 132
  • [24] Concentrate grade prediction of gold ore based on GA-BP neural network
    Liu, Qing
    Yuan, Wei
    Wang, Bao
    Peng, Liang-Zhen
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2015, 36 (02): : 237 - 240
  • [25] Microhardness Prediction Model of Peened Parts Based on GA-BP Neural Network
    Shi M.
    Wang Z.
    Gan J.
    Yang Y.
    Wang X.-L.
    Ren X.-D.
    Shen J.-G.
    Qiu B.
    Surface Technology, 2022, 51 (01): : 332 - 338and357
  • [26] Modeling for project portfolio benefit prediction via a GA-BP neural network
    Tian, Yuanyuan
    Bai, Libiao
    Wei, Lan
    Zheng, Kanyin
    Zhou, Xinyu
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2022, 183
  • [27] Temperature field test and prediction using a GA-BP neural network for CRTS II slab tracks
    Dan Liu
    Chengguang Su
    Rongshan Yang
    Juanjuan Ren
    Xueyi Liu
    Railway Engineering Science, 2023, 31 : 381 - 395
  • [28] Temperature field test and prediction using a GA-BP neural network for CRTS II slab tracks
    Liu, Dan
    Su, Chengguang
    Yang, Rongshan
    Ren, Juanjuan
    Liu, Xueyi
    RAILWAY ENGINEERING SCIENCE, 2023, 31 (04) : 381 - 395
  • [29] Optimization of Stamping Process Parameters Based on Improved GA-BP Neural Network Model
    Xie, Yanmin
    Li, Wei
    Liu, Cheng
    Du, Meiyu
    Feng, Kai
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2023, 24 (07) : 1129 - 1145
  • [30] Prediction and Optimization of Matte Grade in ISA Furnace Based on GA-BP Neural Network
    Zhao, Luo
    Zhu, Daofei
    Liu, Dafang
    Wang, Huitao
    Xiong, Zhangming
    Jiang, Lei
    APPLIED SCIENCES-BASEL, 2023, 13 (07):