Development and validation of a prediction model for malignant sinonasal tumors based on MR radiomics and machine learning

被引:0
|
作者
Wang, Yuchen [1 ]
Han, Qinghe [2 ]
Wen, Baohong [3 ]
Yang, Bingbing [1 ]
Zhang, Chen [4 ]
Song, Yang [4 ]
Zhang, Luo [5 ,6 ,7 ,8 ,9 ]
Xian, Junfang [1 ]
机构
[1] Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing, Peoples R China
[2] Second Hosp Jilin Univ, Dept Radiol, Changchun, Peoples R China
[3] Zhengzhou Univ, Dept MRI, Affiliated Hosp 1, Zhengzhou, Peoples R China
[4] Siemens Healthcare, MR Res Collaborat Team, Beijing, Peoples R China
[5] Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China
[6] Beijing Inst Otorhinolaryngol, Beijing Lab Allerg Dis, Beijing, Peoples R China
[7] Beijing Inst Otorhinolaryngol, Beijing Key Lab Nasal Dis, Beijing, Peoples R China
[8] Chinese Acad Med Sci, Res Unit Diag & Treatment Chron Nasal Dis, Beijing, Peoples R China
[9] Capital Med Univ, Beijing Tongren Hosp, Dept Allergy, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Paranasal sinuses; Neoplasms; Magnetic resonance imaging; Radiomics; Machine learning; DIFFERENTIATING BENIGN; SURVIVAL; CANCER;
D O I
10.1007/s00330-024-11033-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesThis study aimed to utilize MR radiomics-based machine learning classifiers on a large-sample, multicenter dataset to develop an optimal model for predicting malignant sinonasal tumors and tumor-like lesions. MethodsThis study included 1711 adult patients (875 benign and 836 malignant) with sinonasal tumors or tumor-like lesions from three institutions. Patients from institution 1 (n = 1367) constituted both the training and validation cohorts, while those from institution 2 and 3 (n = 158/186) made up the test cohorts. Manual segmentation of the region of interest of the tumor was performed on T1WI, T2WI, and contrast-enhanced T1WI (CE-T1WI). Data normalization, dimensional reductions, feature selection, and classifications were performed using ten machine-learning classifiers. Four fusion models, namely T1WI + T2WI, T1WI + CE-T1WI, T2WI + CE-T1WI, and T1WI + T2WI + CE-T1WI, were constructed using the top ten features with the highest contribution in feature selection in the optimal models of T1WI, T2WI, and CE-T1WI. The Delong test compared areas under the curve (AUC) between models. ResultsThe AUCs of training/validation/test1/test2 datasets for T1WI, T2WI, and CE-T1WI were 0.900/0.842/0.872/0.839, 0.876/0.789/0.842/0.863, and 0.899/0.824/0.831/0.707, respectively. The fusion model from T1WI + T2WI + CE-T1WI had the highest AUC. The AUCs of training/validation/test1/test2 datasets were 0.947/0.849/0.871/0.887. The T1WI + T2WI + CE-T1WI model demonstrated a significantly higher AUC than the T2WI + CE-T1WI model in both cohorts (p < 0.05) and outperformed the T2WI model in test 1 (p = 0.008) and the T1WI model in test 2 (p = 0.006). ConclusionsThis fusion model based on radiomics from T1WI + T2WI + CE-T1WI images and machine learning can improve the power in predicting malignant sinonasal tumors with high accuracy, resilience, and robustness. Clinical relevance statementOur study proposes a radiomics-based machine learning fusion model from T1- and T2-weighted images and contrast-enhanced T1-weighted images, which can non-invasively identify the nature of sinonasal tumors and improve the performance in predicting malignant sinonasal tumors. Key Points. ..
引用
收藏
页码:2074 / 2083
页数:10
相关论文
共 50 条
  • [31] Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study
    Wang, Yiping
    Gao, Zhihong
    Zhang, Yang
    Lu, Zhongqiu
    Sun, Fangyuan
    INTERNAL AND EMERGENCY MEDICINE, 2024,
  • [32] Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study
    Yu, Tao
    Shen, Runnan
    You, Guochang
    Lv, Lin
    Kang, Shimao
    Wang, Xiaoyan
    Xu, Jiatang
    Zhu, Dongxi
    Xia, Zuqi
    Zheng, Junmeng
    Huang, Kai
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [33] A risk prediction model based on machine learning for early cognitive impairment in hypertension: Development and validation study
    Zhong, Xia
    Yu, Jie
    Jiang, Feng
    Chen, Haoyu
    Wang, Zhenyuan
    Teng, Jing
    Jiao, Huachen
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [34] Development and validation of a machine learning-based postpartum depression prediction model: A nationwide cohort study
    Hochman, Eldar
    Feldman, Becca
    Weizman, Abraham
    Krivoy, Amir
    Gur, Shay
    Barzilay, Eran
    Gabay, Hagit
    Levy, Joseph
    Levinkron, Ohad
    Lawrence, Gabriella
    DEPRESSION AND ANXIETY, 2021, 38 (04) : 400 - 411
  • [35] Development of Patent Technology Prediction Model Based on Machine Learning
    Lee, Chih-Wei
    Tao, Feng
    Ma, Yu-Yu
    Lin, Hung-Lung
    AXIOMS, 2022, 11 (06)
  • [36] Development and validation of a nomogram prediction model for early mortality in patients with primary malignant cardiac tumors
    Wang, Shaojun
    Jing, Hui
    Yang, Zhiyong
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (22)
  • [37] A machine learning-based radiomics model for prediction of tumor mutation burden in gastric cancer
    Ma, Tingting
    Zhang, Yuwei
    Zhao, Mengran
    Wang, Lingwei
    Wang, Hua
    Ye, Zhaoxiang
    FRONTIERS IN GENETICS, 2023, 14
  • [38] Construction and validation of a clinical prediction model for deep vein thrombosis in patients with digestive system tumors based on a machine learning
    Zhang, Yunfeng
    Ma, Yongqi
    Wang, Jie
    Guan, Qiang
    Yu, Bo
    AMERICAN JOURNAL OF CANCER RESEARCH, 2024, 14 (01): : 155 - 168
  • [39] Development and Validation of a Machine Learning-Based Nomogram for Prediction of Ankylosing Spondylitis
    Jichong Zhu
    Qing Lu
    Tuo Liang
    Hao JieJiang
    Chenxin Li
    Shaofeng Zhou
    Tianyou Wu
    Jiarui Chen
    Guobing Chen
    Yuanlin Deng
    Shian Yao
    Chaojie Liao
    Shengsheng Yu
    Xuhua Huang
    Liyi Sun
    Wenkang Chen
    Zhen Chen
    Hao Ye
    Wuhua Guo
    Wenyong Chen
    Binguang Jiang
    Xiang Fan
    Xinli Tao
    Chong Zhan
    Rheumatology and Therapy, 2022, 9 : 1377 - 1397
  • [40] Development and Validation of a Machine Learning-Based Nomogram for Prediction of Ankylosing Spondylitis
    Zhu, Jichong
    Lu, Qing
    Liang, Tuo
    Jiang, Jie
    Li, Hao
    Zhou, Chenxin
    Wu, Shaofeng
    Chen, Tianyou
    Chen, Jiarui
    Deng, Guobing
    Yao, Yuanlin
    Liao, Shian
    Yu, Chaojie
    Huang, Shengsheng
    Sun, Xuhua
    Chen, Liyi
    Chen, Wenkang
    Ye, Zhen
    Guo, Hao
    Chen, Wuhua
    Jiang, Wenyong
    Fan, Binguang
    Tao, Xiang
    Zhan, Xinli
    Liu, Chong
    RHEUMATOLOGY AND THERAPY, 2022, 9 (05) : 1377 - 1397