Optimistic sequential multi-agent reinforcement learning with motivational communication

被引:0
|
作者
Huang, Anqi [1 ]
Wang, Yongli [1 ]
Zhou, Xiaoliang [1 ]
Zou, Haochen [1 ]
Dong, Xu [1 ]
Che, Xun [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-agent reinforcement learning; Policy gradient; Motivational communication; Reinforcement learning; Multi-agent system;
D O I
10.1016/j.neunet.2024.106547
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Centralized Training with Decentralized Execution (CTDE) is a prevalent paradigm in the field of fully cooperative Multi-Agent Reinforcement Learning (MARL). Existing algorithms often encounter two major problems: independent strategies tend to underestimate the potential value of actions, leading to the convergence on sub-optimal Nash Equilibria (NE); some communication paradigms introduce added complexity to the learning process, complicating the focus on the essential elements of the messages. To address these challenges, we propose a novel method called O ptimistic S equential S oft Actor Critic with M otivational C ommunication (OSSMC). The key idea of OSSMC is to utilize a greedy-driven approach to explore the potential value of individual policies, named optimistic Q-values, which serve as an upper bound for the Q-value of the current policy. We then integrate a sequential update mechanism with optimistic Q-value for agents, aiming to ensure monotonic improvement in the joint policy optimization process. Moreover, we establish motivational communication modules for each agent to disseminate motivational messages to promote cooperative behaviors. Finally, we employ a value regularization strategy from the Soft Actor Critic (SAC) method to maximize entropy and improve exploration capabilities. The performance of OSSMC was rigorously evaluated against a series of challenging benchmark sets. Empirical results demonstrate that OSSMC not only surpasses current baseline algorithms but also exhibits a more rapid convergence rate.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [31] Emergent Communication in Multi-Agent Reinforcement Learning for Future Wireless Networks
    Chafii M.
    Naoumi S.
    Alami R.
    Almazrouei E.
    Bennis M.
    Debbah M.
    IEEE Internet of Things Magazine, 2023, 6 (04): : 18 - 24
  • [32] DPMAC: Differentially Private Communication for Cooperative Multi-Agent Reinforcement Learning
    Zhao, Canzhe
    Ze, Yanjie
    Dong, Jing
    Wang, Baoxiang
    Li, Shuai
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4638 - 4646
  • [33] HyperComm: Hypergraph-based communication in multi-agent reinforcement learning
    Zhu, Tianyu
    Shi, Xinli
    Xu, Xiangping
    Gui, Jie
    Cao, Jinde
    NEURAL NETWORKS, 2024, 178
  • [34] Multi-Agent Cognition Difference Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Qiu, Tenghai
    Liu, Zhen
    Pu, Zhiqiang
    Yi, Jianqiang
    Yuan, Wanmai
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [35] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [36] Efficient Model-based Multi-agent Reinforcement Learning via Optimistic Equilibrium Computation
    Sessa, Pier Giuseppe
    Kamgarpour, Maryam
    Krause, Andreas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022, : 19580 - 19597
  • [37] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [38] Learning to Share in Multi-Agent Reinforcement Learning
    Yi, Yuxuan
    Li, Ge
    Wang, Yaowei
    Lu, Zongqing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [39] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +
  • [40] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372