Cross-platform gene expression profiling of breast cancer: Exploring the relationship between breast cancer grades and gene expression pattern

被引:2
|
作者
Sarhadi, Shamim
Armani, Arta [1 ]
Jafari-Gharabaghlou, Davoud [2 ]
Sadeghi, Somayeh [3 ]
Zarghami, Nosratollah [2 ,4 ,5 ]
机构
[1] Tech Univ Munich, Inst Clin Chem & Pathobiochem, Sch Med, Klinikum Rechts Isar, Munich, Germany
[2] Istanbul Aydin Univ, Fac Med, Dept Med Biol & Genet, Istanbul, Turkiye
[3] Tabriz Univ Med Sci, Fac Med, Dept Clin Biochem & Lab Med, Tabriz, Iran
[4] Tabriz Univ Med Sci, Fac Med, Dept Immunol, Tabriz, Iran
[5] Istanbul Aydin Univ, Fac Med, Dept Med Biochem, Istanbul, Turkiye
关键词
Gene expression profiling; Transcriptome; Grade classification; Systems biology; SET ENRICHMENT ANALYSIS; CLASSIFICATION; NETWORKANALYST; METAANALYSIS;
D O I
10.1016/j.heliyon.2024.e29736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene expression profiling is a powerful tool that has been extensively used to investigate the underlying biology and etiology of diseases, including cancer. Microarray gene expression analysis enables simultaneous measurement of thousands of mRNA levels. Sophisticated computational approaches have evolved in parallel with the rapid progress in bioassay technologies, enabling more effective analysis of the large and complex datasets that these technologies produce. In this study, we utilized systems biology approaches to examine gene expression profiles across different grades of breast cancer progression. We conducted a meta-analysis of publicly available microarray data to elucidate the molecular mechanisms underlying breast cancer grade classification. Our results suggest that while grade index is commonly used for evaluating cancer progression status in the clinic, the complexity of molecular mechanisms, histological characteristics, and other factors related to patient outcomes raises doubts about the utility of breast cancer grades as a foundation for formulating treatment protocols. Our study underscores the importance of advancing personalized strategies for breast cancer classification and management. More research is crucial to refine diagnostic tools and treatment modalities, aiming for greater precision and tailored care in patient outcomes.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Indications for Prognostic Gene Expression Profiling in Early Breast Cancer
    Cobain, Erin F.
    Hayes, Daniel F.
    CURRENT TREATMENT OPTIONS IN ONCOLOGY, 2015, 16 (05)
  • [42] Indications for Prognostic Gene Expression Profiling in Early Breast Cancer
    Erin F. Cobain
    Daniel F. Hayes
    Current Treatment Options in Oncology, 2015, 16
  • [43] Molecular classification of breast cancer patients by gene expression profiling
    Ahr, A
    Holtrich, U
    Solbach, C
    Scharl, A
    Strebhardt, K
    Karn, T
    Kaufmann, M
    JOURNAL OF PATHOLOGY, 2001, 195 (03): : 312 - 320
  • [44] Gene expression profiling for prediction of clinical characteristics of breast cancer
    Huang, E
    West, M
    Nevins, JR
    RECENT PROGRESS IN HORMONE RESEARCH, VOL 58: HUMAN GENOME AND ENDOCRINOLOGY, 2003, 58 : 55 - 73
  • [45] Breast cancer patients overestimate value of gene expression profiling
    Wilson, Hannah
    PERSONALIZED MEDICINE, 2014, 11 (04) : 373 - 374
  • [46] Gene expression profiling in women with breast cancer in a Saudi population
    Bin Amer, Suad M.
    Maqbool, Zakia
    Nirmal, Maimoona S.
    Qattan, Amal T.
    Hussain, Syed S.
    Jeprel, Hatim A.
    Tulbah, Asma M.
    Malik, Sama A.
    Al-Tweigeri, Taber A.
    SAUDI MEDICAL JOURNAL, 2008, 29 (04) : 507 - 513
  • [47] Gene expression profiling of circulating tumor cells in breast cancer
    Cappelletti, V.
    Fina, E.
    Miodini, P.
    Callari, M.
    Musella, V.
    Agresti, R.
    Moliterni, A.
    Daidone, M. G.
    EUROPEAN JOURNAL OF CANCER, 2011, 47 : S12 - S13
  • [48] Breast cancer gene expression analysis - The case for dynamic profiling
    Ellis, MJ
    NEW TRENDS IN CANCER FOR THE 21ST CENTURY, 2003, 532 : 223 - 234
  • [49] Gene expression profiling predicts clinical outcome of breast cancer
    Laura J. van 't Veer
    Hongyue Dai
    Marc J. van de Vijver
    Yudong D. He
    Augustinus A. M. Hart
    Mao Mao
    Hans L. Peterse
    Karin van der Kooy
    Matthew J. Marton
    Anke T. Witteveen
    George J. Schreiber
    Ron M. Kerkhoven
    Chris Roberts
    Peter S. Linsley
    René Bernards
    Stephen H. Friend
    Nature, 2002, 415 : 530 - 536
  • [50] Gene expression profiling for individualized breast cancer chemotherapy: success or not?
    Ioannidis, John P. A.
    NATURE CLINICAL PRACTICE ONCOLOGY, 2006, 3 (10): : 538 - 539