Multimodal Recipe Recommendation with Heterogeneous Graph Neural Networks

被引:0
|
作者
Ouyang, Ruiqi [1 ]
Huang, Haodong [2 ]
Ou, Weihua [1 ,2 ]
Liu, Qilong [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[2] Guizhou Normal Univ, Sch Bigdata & Comp Sci, Guiyang 550025, Peoples R China
关键词
recipe recommendation; heterogeneous graph neural networks; GraphSAGE; multimodal;
D O I
10.3390/electronics13163283
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recipe recommendation is the process of recommending suitable recipes to users based on factors such as user preferences and dietary needs. Recipes typically involve multiple modalities, with text and images being common, while most typical recipe recommendation methods recommend recipes to users based on text. Obviously, the expressiveness of a single modal is often not enough, and the semantic information of images is more abundant. Moreover, it is difficult to grasp the feature fusion granularity of different kinds of modal information and the relationship between recipes and users. To solve the above problem, this paper proposes a Multimodal Heterogeneous Graph Neural Network Recipe Recommendation (MHGRR) architecture, which aims to fully fuse the various kinds of modal information of recipes and handle the relationship between users and recipes. We use embedding and shallow Convolutional Neural Networks (CNNs) to extract original text and image information for unifying feature fusion granularity, and use Heterogeneous Graph Neural Networks based on GraphSAGE to capture the complex relationship between users and recipes. To verify the effectiveness of our proposed model, we perform some comparative experiments on a real dataset; the experiments show that our method outperforms most popular recipe recommendation methods. Through an ablation experiment, we found that adding image information to recipe recommendation is more effective, and we additionally found that as the output dimensions of GraphSAGE increased, the performance of the model varied little.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [11] Sequential Recommendation with Graph Neural Networks
    Chang, Jianxin
    Gao, Chen
    Zheng, Yu
    Hui, Yiqun
    Niu, Yanan
    Song, Yang
    Jin, Depeng
    Li, Yong
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 378 - 387
  • [12] Graph Neural Networks for Social Recommendation
    Fan, Wenqi
    Ma, Yao
    Li, Qing
    He, Yuan
    Zhao, Eric
    Tang, Jiliang
    Yin, Dawei
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 417 - 426
  • [13] Graph Convolutional Neural Network for Multimodal Movie Recommendation
    Mondal, Prabir
    Chakder, Daipayan
    Raj, Subham
    Saha, Sriparna
    Onoe, Naoyuki
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 1633 - 1640
  • [14] Graph Filtering for Recommendation on Heterogeneous Information Networks
    Zhang, Chuanyan
    Hong, Xiaoguang
    Zhang, Chuanyan (chuanyan_zhang@sina.cn), 1600, Institute of Electrical and Electronics Engineers Inc., United States (08): : 52872 - 52883
  • [15] Graph Filtering for Recommendation on Heterogeneous Information Networks
    Zhang, Chuanyan
    Hong, Xiaoguang
    IEEE ACCESS, 2020, 8 : 52872 - 52883
  • [16] Adversarial Heterogeneous Graph Neural Network for Robust Recommendation
    Sang, Lei
    Xu, Min
    Qian, Shengsheng
    Wu, Xindong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (05) : 2660 - 2671
  • [17] A heterogeneous graph neural network model for list recommendation
    Yang, Wenchuan
    Li, Jichao
    Tan, Suoyi
    Tan, Yuejin
    Lu, Xin
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [18] Graph neural networks for preference social recommendation
    Ma, Gang-Feng
    Yang, Xu-Hua
    Tong, Yue
    Zhou, Yanbo
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [19] Social Recommendation based on Graph Neural Networks
    Sun, Hongji
    Lin, Lili
    Chen, Riqing
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 489 - 496
  • [20] Temporal Graph Neural Networks for Social Recommendation
    Bai, Ting
    Zhang, Youjie
    Wu, Bin
    Nie, Jian-Yun
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 898 - 903