Multi-view denoising contrastive learning for bundle recommendation

被引:1
|
作者
Sang, Lei [1 ]
Hu, Yang [1 ]
Zhang, Yi [1 ]
Zhang, Yiwen [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, 111 Jiulong Rd, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Bundle recommendation; Graph neural networks; Constrastive learning;
D O I
10.1007/s10489-024-05825-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of bundle recommendation is to offer users a set of items that match their preferences. Current methods mainly categorize user preferences into bundle and item levels, and then use graph neural networks to obtain representations of users and bundles at both levels. However, real-world interaction data often contains irrelevant and uninformative noise connections, leading to inaccurate representations of user interests and bundle content. In this paper, we introduce a Multi-view Denoising Contrastive Learning approach for Bundle Recommendation (MDCLBR), aiming to reduce the negative effects of noisy data on users' and bundles' representations. We use the original view, which includes bundle and item levels, to guide data augmentation for creating augmented views. Then, we apply the multi-view contrastive learning paradigm to enhance collaboration within the original view, the augmented views, and between them. This leads to more accurate representations of users and bundles, reducing the impact of noisy data. Our method outperforms previous approaches in extensive experiments on three real-world public datasets.
引用
收藏
页码:12332 / 12346
页数:15
相关论文
共 50 条
  • [21] A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation
    Xu, Zitao
    Pan, Weike
    Ming, Zhong
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 491 - 501
  • [22] Dual contrastive learning for multi-view clustering
    Bao, Yichen
    Zhao, Wenhui
    Zhao, Qin
    Gao, Quanxue
    Yang, Ming
    NEUROCOMPUTING, 2024, 599
  • [23] Multi-View Contrastive Learning from Demonstrations
    Correia, Andre
    Alexandre, Luis A.
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 338 - 344
  • [24] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144
  • [25] Contrastive Multi-View Representation Learning on Graphs
    Hassani, Kaveh
    Khasahmadi, Amir Hosein
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [26] Bundle Recommendation with Item-Level Causation-Enhanced Multi-view Learning
    Nguyen, Huy-Son
    Bui, Tuan-Nghia
    Nguyen, Long-Hai
    Hung Hoang
    Nguyen, Cam-Van Thi
    Le, Hoang-Quynh
    Le, Duc-Trong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-RESEARCH TRACK AND DEMO TRACK, PT VIII, ECML PKDD 2024, 2024, 14948 : 324 - 341
  • [27] Multi-View Intent Disentangle Graph Networks for Bundle Recommendation
    Zhao, Sen
    Wei, Wei
    Zou, Ding
    Mao, Xianling
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 4379 - 4387
  • [28] Adaptive multi-graph contrastive learning for bundle recommendation
    Tao, Qian
    Liu, Chenghao
    Xia, Yuhan
    Xu, Yong
    Li, Lusi
    NEURAL NETWORKS, 2025, 181
  • [29] MVL: Multi-View Learning for News Recommendation
    Santosh, T. Y. S. S.
    Saha, Avirup
    Ganguly, Niloy
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1873 - 1876
  • [30] Multi-View Active Learning for Video Recommendation
    Cai, Jia-Jia
    Tang, Jun
    Chen, Qing-Guo
    Hu, Yao
    Wang, Xiaobo
    Huang, Sheng-Jun
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2053 - 2059