Thermoelectric Properties Regulated by Quantum Size Effects in Quasi-One-Dimensional γ-Graphdiyne Nanoribbons

被引:0
|
作者
Li, Mi [1 ]
Liu, Qiaohan [1 ]
Zou, Yi [1 ]
Wang, Jingang [1 ]
Fan, Chuanqiang [1 ]
机构
[1] Liaoning Petrochem Univ, Coll Sci, Fushun 113001, Peoples R China
来源
MOLECULES | 2024年 / 29卷 / 14期
关键词
thermoelectricity; one-dimensional material; thermal conductivity; band; GDYNRs; OPTICAL-RESPONSE; GRAPHYNE; FIGURE;
D O I
10.3390/molecules29143312
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using density functional theory combined with the first principles calculation method of non-equilibrium Green's function (NEGF-DFT), we studied the thermoelectric (TE) characteristics of one-dimensional gamma-graphdiyne nanoribbons (gamma-GDYNRs). The study found that the thermal conductivity of gamma-GDYNRs has obvious anisotropy. At the same temperature and geometrical size, the lattice thermal conductivity of zigzag-edged gamma-graphdiyne nanoribbons (gamma-ZGDYNRs) is much lower than that of armchair-edged gamma-graphdiyne nanoribbons (gamma-AGDYNRs). We disclose the underlying mechanism for this intrinsic orientation. That is, gamma-AGDYNRs have more phonon dispersion over the entire frequency range. Furthermore, the orientation dependence increases when the width of the gamma-GDYNRs decreases. These excellent TE properties allow armchair-edged gamma-graphdiyne nanoribbons with a planar width of 1.639 nm (gamma-Z(2)GDYNRs) to have a higher power factor and lower thermal conductivity, ultimately resulting in a significantly higher TE conversion rate than other gamma-GDYNR structures.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Collapse of resonance in quasi-one-dimensional quantum channels
    C. S. Kim
    A. M. Satanin
    Yong S. Joe
    R. M. Cosby
    Journal of Experimental and Theoretical Physics, 1999, 89 : 144 - 150
  • [42] Quantum Dynamics of Charge in Quasi-One-Dimensional Superconductors
    Lehtinen, J. S.
    L'vov, B. G.
    Arutyunov, K. Yu.
    PHYSICS OF THE SOLID STATE, 2018, 60 (11) : 2135 - 2138
  • [43] Compressibility Measurements of Quasi-One-Dimensional Quantum Wires
    Smith, L. W.
    Hamilton, A. R.
    Thomas, K. J.
    Pepper, M.
    Farrer, I.
    Griffiths, J. P.
    Jones, G. A. C.
    Ritchie, D. A.
    PHYSICAL REVIEW LETTERS, 2011, 107 (12)
  • [44] Quantum Ballistic Conduction in Quasi-One-Dimensional Systems
    Vargiamidis, Vassilios
    Polatoglou, Hariton M.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (02) : 430 - 453
  • [45] THE INFLUENCE OF ONE-DIMENSIONAL QUANTUM FLUCTUATIONS IN QUASI-ONE-DIMENSIONAL CONDUCTORS
    BOURBONNAIS, C
    CARON, LG
    JOURNAL DE PHYSIQUE, 1983, 44 (NC-3): : 911 - 917
  • [46] MAGNETOPLASMONS IN A QUASI-ONE-DIMENSIONAL QUANTUM-WIRE
    ZHAO, HL
    ZHU, Y
    WANG, LH
    FENG, SC
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (09) : 1685 - 1694
  • [47] Collapse of resonance in quasi-one-dimensional quantum channels
    Kim, CS
    Satanin, AM
    Joe, YS
    Cosby, RM
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 89 (01) : 144 - 150
  • [48] FLUCTUATION EFFECTS IN QUASI-ONE-DIMENSIONAL SUPERCONDUCTORS
    SCHULZ, HJ
    PHYSICA B & C, 1981, 108 (1-3): : 1179 - 1180
  • [49] General quantum picture for magnetoresistance angular effects in quasi-one-dimensional conductors
    Osada, T
    Kuraguchi, M
    SYNTHETIC METALS, 2003, 133 : 75 - 77
  • [50] General quantum picture for magnetoresistance angular effects in quasi-one-dimensional conductors
    Osada, T.
    Kuraguchi, M.
    Synth Met, (75-77):