Plasma Insulin Cognizant Predictive Control for Artificial Pancreas

被引:0
|
作者
Rashid, Mudassir [1 ]
Hajizadeh, Iman [1 ]
Cinar, Ali [1 ]
机构
[1] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
基金
美国国家卫生研究院;
关键词
CLOSED-LOOP CONTROL; GLUCOSE CONTROL; TYPE-1; PEOPLE; SENSOR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the present work, an adaptive model predictive control (MPC) algorithm is designed to effectively compute the optimal exogenous insulin delivery for artificial pancreas systems. The proposed MPC is designed using adaptive models that are recursively identified through subspace-based techniques to characterize the transient dynamics of glycemic measurements without requiring any information on the time and amount of carbohydrate consumption. A dynamic safety constraint derived from the estimation of plasma insulin concentration (PIC) is incorporated in the proposed MPC algorithm for the efficacy and reliability of the artificial pancreas system. The MPC algorithm, cognizant of the PIC, computes the optimal control solution to regulate blood glucose concentration while mitigating aggressive control actions (excessive insulin doses) when sufficient insulin is present in the bloodstream, thereby minimizing the risk of hypoglycemia. The efficiency of the proposed MPC algorithm is demonstrated using simulation studies.
引用
收藏
页码:3589 / 3594
页数:6
相关论文
共 50 条
  • [21] Model Predictive Control with Event-Triggered Communication for an Embedded Artificial Pancreas
    Chakrabarty, Ankush
    Zavitsanou, Stamatina
    Doyle, Francis J., III
    Dassau, Eyal
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 536 - 541
  • [22] Event-Triggered Model Predictive Control for Embedded Artificial Pancreas Systems
    Chakrabarty, Ankush
    Zavitsanou, Stamatina
    Doyle, Francis J., III
    Dassau, Eyal
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (03) : 575 - 586
  • [23] INSULIN DEPENDENT DIABETES AND THE ARTIFICIAL PANCREAS
    ALBISSER, AM
    ZINMAN, B
    MEDICAL PROGRESS THROUGH TECHNOLOGY, 1982, 9 (2-3) : 113 - 118
  • [24] Artificial pancreas: automatic control of insulin infusion in type 1 diabetes mellitus
    Bondia, J.
    Vehi, J.
    Palerm, C. C.
    Herrero, P.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2010, 7 (02): : 5 - +
  • [25] ARTIFICIAL INSULIN DELIVERY SYSTEMS VERSUS PANCREAS TRANSPLANTATION - EFFECT ON METABOLIC CONTROL
    POZZA, G
    SECCHI, A
    BOSI, E
    MICOSSI, P
    PIATTI, PM
    MONTI, LD
    CRISTALLO, M
    PONTIROLI, AE
    GELET, A
    DUBERNARD, JM
    TRAEGER, J
    TRANSPLANTATION PROCEEDINGS, 1985, 17 (01) : 358 - 359
  • [26] Clinical Results of Real-Time Estimation of Plasma Insulin for an Artificial Pancreas System
    Palerm, Cesar C.
    Voskanyan, Gayane R.
    Roy, Anirban
    Kandeel, Fouad R.
    DIABETES, 2009, 58 : A113 - A113
  • [27] Development of a Model Predictive Controller for an Artificial Pancreas
    El Hachimi, M.
    Ballouk, A.
    Khelafa, I.
    Baghdad, A.
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES (ICEIT 2017), 2017,
  • [28] Accelerated model predictive controller for artificial pancreas
    El Hachimi, Mohamed
    Ballouk, Abdelhakim
    Khelafa, Ilyass
    Baghdad, Abdennaceur
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2018, 30 (03) : 229 - 238
  • [29] Nonlinear Model Predictive Control and System Identification for a Dual-hormone Artificial Pancreas
    Reenberg, Asbjorn Thode
    Ritschel, Tobias K. S.
    Lindkvist, Emilie B.
    Laugesen, Christian
    Svensson, Jannet
    Ranjan, Ajenthen G.
    Norgaard, Kirsten
    Jorgensen, John Bagterp
    IFAC PAPERSONLINE, 2022, 55 (07): : 915 - 921
  • [30] In Silico Testing of a Closed-Loop Artificial Pancreas Based on Generalized Predictive Control
    Liu, Wenping
    Jin, Haoyu
    4TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2020), 2020, 1642