Co-Ru bimetallic nanoparticles/oxygen deficient perovskite oxides as a highly efficient anode catalyst layer for direct-methane solid oxide fuel cells

被引:0
|
作者
Zhang, Wei [1 ]
Wei, Jialu [1 ]
Zhou, Yixuan [1 ]
Mao, Yuezhen [1 ]
Alonso, Jose Antonio [2 ]
Lopez, Carlos A. [3 ,4 ]
Fernandez-Diaz, Maria Teresa [5 ]
Song, Yipeng [1 ]
Ma, Xuelu [1 ]
Sun, Chunwen [1 ]
机构
[1] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[2] CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain
[3] UNSL, INTEQUI, CONICET, Almirante Brown 1455, RA-5700 San Luis, Argentina
[4] UNSL, Fac Quim Bioquim & Farm, Almirante Brown 1455, RA-5700 San Luis, Argentina
[5] Inst Laue Langevin, F-38042 Grenoble, France
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Solid oxide fuel cell; Internal reforming catalyst layer; Oxygen vacancy; Carbon deposition; Reaction mechanism; PERFORMANCE; CH4; STABILITY; MANGANITE;
D O I
10.1016/j.cej.2024.155502
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The ever-increasing production of natural gas has underscored the potential of methane-fueled solid oxide fuel cells (SOFCs) as feasible energy conversion devices. Herein, we present an internal reforming catalyst consisting of in-situ exsolved CoRu bimetallic nanoparticles, oxygen deficient layered-double perovskite PrBaMn1.6Co0.2Ru0.2O5+delta (PBMCRO5) and perovskite Pr0.5Ba0.5Mn0.8Co0.1Ru0.1O3-delta (PBMCRO3) parent. As a catalyst layer for SOFCs, the cell shows a high peak power of 522 mW cm(-2) in CH4 and can operate stably for over 150 h with a degradation rate of only 1.4 %. By combining neutron power diffraction (NPD) and density functional theory (DFT) calculations, it unveils the effective conversion of CH4 to H-2 and CO is facilitated by the synergistic effect of CoRu nanoparticles and PBMCRO5 matrix. Additionally, the electronic coupling of CoRu bimetallic not only inhibits carbon deposition but also optimally balances the electroactivity and adsorption affinity between Ru and H atoms, thereby facilitating reversible hydrogen spillover.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] SrMo0.9O3-δ Perovskite with Segregated Ru Nanoparticles Performing as Anode in Solid Oxide Fuel Cells
    Cascos, Vanessa
    Chivite Lacaba, Monica
    Biskup, Neven
    Teresa Fernandez-Diaz, Maria
    Antonio Alonso, Jose
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (14) : 17474 - 17482
  • [22] Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer
    Jin, Chao
    Yang, Chenghao
    Zhao, Fei
    Coffin, Adam
    Chen, Fanglin
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) : 1450 - 1452
  • [23] Effect of methane concentration on reaction behavior in direct-methane solid oxide fuel cells with (Ce,Gd)O2-x-impregnated FeCr layer for fuel processing
    Huang, Ta-Jen
    Huang, Meng-Chin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2009, 155 (1-2) : 333 - 338
  • [24] Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells
    Garcia, Alfonso
    Yan, Ning
    Vincent, Adrien
    Singh, Anand
    Hill, Josephine M.
    Chuang, Karl T.
    Luo, Jing-Li
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (47) : 23973 - 23980
  • [25] Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst
    Zhang, Lei
    Yang, Chenghao
    Frenkel, Anatoly I.
    Wang, Siwei
    Xiao, Guoliang
    Brinkman, Kyle
    Chen, Fanglin
    [J]. JOURNAL OF POWER SOURCES, 2014, 262 : 421 - 428
  • [26] Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst
    Wan, Tingting
    Zhu, Ankang
    Guo, Youmin
    Wang, Chunchang
    Huang, Shouguo
    Chen, Huili
    Yang, Guangming
    Wang, Wei
    Shao, Zongping
    [J]. JOURNAL OF POWER SOURCES, 2017, 348 : 9 - 15
  • [27] Nano Ru Impregnated Ni-YSZ Anode as Carbon Resistance Layer for Direct Ethanol Solid Oxide Fuel Cells
    SUN Liangliang
    ZHENG Tao
    HU Zhimin
    LUO Linghong
    WU Yefan
    XU Xu
    CHENG Liang
    SHI Jijun
    [J]. Journal of the Chinese Ceramic Society, 2015, 2 (01) : 25 - 29
  • [28] Toward highly efficient in situ dry reforming of H2S contaminated methane in solid oxide fuel cells via incorporating a coke/sulfur resistant bimetallic catalyst layer
    Hua, Bin
    Yan, Ning
    Li, Meng
    Sun, Yi-Fei
    Chen, Jian
    Zhang, Ya-Qian
    Li, Jian
    Etsell, Thomas
    Sarkar, Partha
    Luo, Jing-Li
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (23) : 9080 - 9087
  • [29] Highly connected oxygen ion conduction pathways in anode functional layer for high performance solid oxide fuel cells
    Bang, Sehee
    Lee, Jongseo
    Lee, Wonyoung
    [J]. JOURNAL OF POWER SOURCES, 2023, 553
  • [30] A Highly Efficient and Robust Perovskite Anode with Iron-Palladium Co-exsolutions for Intermediate-Temperature Solid-Oxide Fuel Cells
    Li, Jingwei
    Wei, Bo
    Yue, Xing
    Lu, Zhe
    [J]. CHEMSUSCHEM, 2018, 11 (15) : 2593 - 2603