Automating Mobile App Review User Feedback with Aspect-Based Sentiment Analysis

被引:2
|
作者
Ballas, Vasileios [1 ]
Michalakis, Konstantinos [1 ]
Alexandridis, Georgios [1 ]
Caridakis, George [1 ]
机构
[1] Univ Aegean, Univ Hill, Mitilini 81100, Greece
关键词
Aspect-based Sentiment Analysis; User Feedback; Mobile Application; User Experience Evaluation;
D O I
10.1007/978-3-031-60487-4_14
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Effective user feedback is crucial for enhancing the user experience (UX) of mobile applications. However, manually analyzing user reviews can be time-consuming and labour-intensive. This paper investigates the application of state-of-the-art aspect-based sentiment analysis (ABSA) algorithms to automate user review analysis and feedback. We scrape the most relevant Google Play Store user reviews for 6 distinct applications of unrelated categories and we separate them into single sentences. We employ and fine-tune a BERT-based ABSA model - Aspect Sentiment Triplet Extraction by PyABSA - to extract sentiment triplets (aspect, opinion, polarity) from the review sentences. The results demonstrate that ABSA models can effectively capture user feedback by identifying specific aspects and sentiments related to app features and functionalities. Our framework, which utilizes the ABSA model along with filtering methods via Topic Modeling, can automatically extract sentiment triplets and provide additional suggestions and statistics for the app developers. This framework facilitates efficient and comprehensive user feedback collection, enabling developers to make informed decisions for UX improvement.
引用
收藏
页码:179 / 193
页数:15
相关论文
共 50 条
  • [21] Survey on aspect detection for aspect-based sentiment analysis
    Maria Mihaela Truşcǎ
    Flavius Frasincar
    Artificial Intelligence Review, 2023, 56 : 3797 - 3846
  • [22] Aspect-Based Sentiment Analysis Using Aspect Map
    Noh, Yunseok
    Park, Seyoung
    Park, Seong-Bae
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [23] Aspect-Based Sentiment Analysis of User Reviews in 5G Networks
    Zhang, Yin
    Lu, Huimin
    Jiang, Chi
    Li, Xin
    Tian, Xinliang
    IEEE NETWORK, 2021, 35 (04): : 228 - 233
  • [24] Aspect-Based Sentiment Analysis of Patient Feedback Using Large Language Models
    Alkhnbashi, Omer S.
    Mohammad, Rasheed
    Hammoudeh, Mohammad
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (12)
  • [25] Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis
    Wan, Hai
    Yang, Yufei
    Du, Jianfeng
    Liu, Yanan
    Qi, Kunxun
    Pan, Jeff Z.
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9122 - 9129
  • [26] Review-Level Aspect-Based Sentiment Analysis Using an Ontology
    de Kok, Sophie
    Punt, Linda
    van den Puttelaar, Rosita
    Ranta, Karoliina
    Schouten, Kim
    Frasincar, Flavius
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 315 - 322
  • [27] Aspect-based Sentiment Analysis to Review Products Using Naive Bayes
    Mubarok, Mohamad Syahrul
    Adiwijaya
    Aldhi, Muhammad Dwi
    INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION: EMPOWERING ENGINEERING USING MATHEMATICS, 2017, 1867
  • [28] Datasets for Aspect-Based Sentiment Analysis in French
    Apidianaki, Marianna
    Tannier, Xavier
    Richart, Cecile
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1122 - 1126
  • [29] Data augmentation for aspect-based sentiment analysis
    Guangmin Li
    Hui Wang
    Yi Ding
    Kangan Zhou
    Xiaowei Yan
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 125 - 133
  • [30] A Survey on Multimodal Aspect-Based Sentiment Analysis
    Zhao, Hua
    Yang, Manyu
    Bai, Xueyang
    Liu, Han
    IEEE ACCESS, 2024, 12 : 12039 - 12052