Explicating conjugated polymer extraction used for the differentiation of single-walled carbon nanotubes

被引:0
|
作者
Just, Dominik [1 ]
Wasiak, Tomasz [1 ]
Dzienia, Andrzej [1 ]
Milowska, Karolina Z. [2 ,3 ]
Mielanczyk, Anna [1 ]
Janas, Dawid [1 ]
机构
[1] Silesian Tech Univ, Dept Chem, B Krzywoustego 4, PL-44100 Gliwice, Poland
[2] CIC nanoGUNE, Donostia San Sebastian 20018, Spain
[3] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
基金
欧盟地平线“2020”;
关键词
SELECTIVE DISPERSION; OPTICAL-PROPERTIES; MOLECULAR-WEIGHT; ENRICHMENT; SEPARATION;
D O I
10.1039/d4nh00427b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-walled carbon nanotubes (SWCNTs) are synthesized as mixtures of various SWCNT types, exhibiting drastically different properties, and thereby making the material of limited use. Fluorene-based polymers are successful agents for purifying such blends by means of conjugated polymer extraction (CPE), greatly increasing their application potential. However, a limited number of studies have devoted attention to understanding the effects of the polyfluorene backbone and side chain structure on the selectivity and separation efficiency of SWCNTs. Regarding the impact of the polymer backbone, it was noted that the ability to extract SWCNTs with conjugated polymers could be significantly enhanced by using fluorene-based copolymers that exhibit dramatically different interactions with SWCNTs depending on the types of monomers combined. However, the role of monomer side chains remains much less explored, and the knowledge generated so far is fragmentary. Herein, we present a new approach to tailor polymer selectivity by creating copolymers of polyfluorene bearing mixed-length alkyl chains. Their thorough and systematic analysis by experiments and modeling revealed considerable insight into the impact of the attached functional groups on the capacity of conjugated polymers for the purification of SWCNTs. Interestingly, the obtained results contradict the generally accepted conclusion that polyfluorene-based polymers and copolymers with longer chains always prefer SWCNTs of larger diameters. Besides that, we report that the capacity of such polymers for sorting SWCNTs may be substantially enhanced using specific low molecular weight compounds. The carried-out research provides considerable insight into the behavior of polymers and carbon-based materials at the nanoscale. In this work, an array of newly synthesized conjugated polymers is used to unravel the mechanism of purification of complex mixtures of single-walled carbon nanotubes.
引用
收藏
页码:2349 / 2359
页数:11
相关论文
共 50 条
  • [31] Mechanics of single-walled carbon nanotubes inside open single-walled carbon nanocones
    Ansari, R.
    Hosseinzadeh, M.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (11) : 3363 - 3370
  • [32] Mechanics of single-walled carbon nanotubes inside open single-walled carbon nanocones
    R. Ansari
    M. Hosseinzadeh
    Journal of Mechanical Science and Technology, 2013, 27 : 3363 - 3370
  • [33] Chemistry of Single-Walled Carbon Nanotubes
    Yeung, Charles See
    Tian, Wei Quart
    Liu, Lei Vincent
    Wang, Yan Alexander
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (06) : 1213 - 1235
  • [34] Formylation of Single-Walled Carbon Nanotubes
    Suri, Anil
    Coleman, Karl S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) : 2929 - 2933
  • [35] Collapse of single-walled carbon nanotubes
    Tang, T
    Jagota, A
    Hui, CY
    Glassmaker, NJ
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (07)
  • [36] Chemistry of single-walled carbon nanotubes
    Niyogi, S
    Hamon, MA
    Hu, H
    Zhao, B
    Bhowmik, P
    Sen, R
    Itkis, ME
    Haddon, RC
    ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) : 1105 - 1113
  • [37] Antioxidant Single-Walled Carbon Nanotubes
    Lucente-Schultz, Rebecca M.
    Moore, Valerie C.
    Leonard, Ashley D.
    Price, B. Katherine
    Kosynkin, Dmitry V.
    Lu, Meng
    Partha, Ranga
    Conyers, Jodie L.
    Tour, James M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) : 3934 - 3941
  • [38] Cutting single-walled carbon nanotubes
    Ziegler, KJ
    Gu, ZN
    Shaver, J
    Chen, ZY
    Flor, EL
    Schmidt, DJ
    Chan, C
    Hauge, RH
    Smalley, RE
    NANOTECHNOLOGY, 2005, 16 (07) : S539 - S544
  • [39] Formylation of single-walled carbon nanotubes
    Bayazit, Mustafa K.
    Suri, Anil
    Coleman, Karl S.
    CARBON, 2010, 48 (12) : 3412 - 3419
  • [40] Photoconductivity of single-walled carbon nanotubes
    Fujiwara, A
    Matsuoka, Y
    Suematsu, H
    Ogawa, N
    Miyano, K
    Kataura, H
    Maniwa, Y
    Suzuki, S
    Achiba, Y
    NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 189 - 192